已知函數(shù)f(x)=-x+log2
1-x
1+x
,定義域為(-1,1)
(1)求f(
1
2008
)+f(-
1
2008
)
的值.
(2)判斷函數(shù)f(x)在定義域上的單調(diào)性并給出證明.
(1)∵函數(shù)f(x)=-x+log2
1-x
1+x
,定義域為(-1,1);
∴任取x∈(-1,1),有f(-x)=x+log2
1+x
1-x
=-(-x+log2
1-x
1+x
)=-f(x),∴f(x)是定義域上的奇函數(shù);
f(
1
2008
)+f(-
1
2008
)
=f(
1
2008
)-f(
1
2008
)=0;
(2)f(x)是定義域上(-1,1)的減函數(shù),證明如下:
∵f(x)是定義域上(-1,1)的奇函數(shù),
∴任取x1,x2∈(-1,1),且x1<x2,則
f(x1)-f(x2)=(-x1+log2
1-x1
1+x1
)-(-x2+log2
1-x2
1+x2
)=(x2-x1)+log2
1-x1
1+x1
1+x2
1-x2
)=(x2-x1)+log2
(1-x1x2)+(x2-x1)
(1-x1x2)+(x1-x2)
;
∵-1<x1<x2<1,∴x2-x1>0,
(1-x1x2)+(x2-x1)
(1-x1x2)+(x1-x2)
>1,即log2
(1-x1x2)+(x2-x1)
(1-x1x2)+(x1-x2)
>0;
∴f(x1)-f(x2)>0,即f(x1)>f(x2);
所以,f(x)是定義域上(-1,1)的減函數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(n)=
2009
n-a
(n∈N*)
,若常數(shù)a∈(2008,2009),則n=______時,函數(shù)取最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=
x2-4,0≤x≤2
2x,x>2
,則f(2)=______;若f(x0)=6,則x0=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,在(1,+∞)上為減函數(shù)的是( 。
A.y=(x-2)2B.y=(
3
)x
C.y=-
1
x
D.y=-x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

“若函數(shù)f(x)在區(qū)間(-1,0)和(0,1)上都單調(diào)遞增,則函數(shù)f(x)在區(qū)間(-1,1)上單調(diào)遞增”的一個反例是( 。
A.f(x)=x2B.f(x)=-x2
C.f(x)=
x+1
0
(x<0)
(x=0)
x-1(x>0)
D.f(x)=
x-1
0
(x<0)
(x=0)
x+1(x>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=
1
1-x(1-x)
(x∈[1,2])的最大值是( 。
A.
4
5
B.1C.
3
4
D.
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義運算a?b=
a,(a≤b)
b,(a>b)
,已知函數(shù)f(x)=(3-x)?2x,則f(x)的最大值為 ______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(1+x)=f(1-x),當1<x1<x2時,[f(x2)-f(x1)](x2-x1)>0恒成立,設(shè)a=f(-
1
2
),b=f(2),c=f(3),則a,b,c的大小關(guān)系為( 。
A.b<a<cB.c<b<aC.b<c<aD.a(chǎn)<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)f(x)=
ex,x≤1
f(x-1),x>1
,則f(ln3)=( 。
A.
3
e
B.ln3-1C.eD.3e

查看答案和解析>>

同步練習(xí)冊答案