在等差數(shù)列中,各項(xiàng)均不為0,求證:

答案:略
解析:

證明:∵是等差數(shù)列,且,∴可設(shè)公差為d

(1)當(dāng)d=0時,,等式明顯成立.

(2)d¹ 0時,由可知

∴原式得證.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的各項(xiàng)均為正整數(shù),a1=1,前n項(xiàng)和為Sn,又在等比數(shù)列{bn}中,b1=2,b2S2=16,且當(dāng)n≥2時,有ban=4ban-1成立,n∈N*
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)cn=
6bn
b
2
n
-1
,證明:c1+c2+…+cn
4
5
(9-
8
2n
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:047

在等差數(shù)列中,各項(xiàng)均不為0,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河南省南陽市高三第三次聯(lián)考(高考模擬)文科數(shù)學(xué)試卷(解析版) 題型:解答題

在等差數(shù)列中,,其前n項(xiàng)和為,等比數(shù)列的各項(xiàng)均為正數(shù),,公比為q,且.

1)求;

2)設(shè)數(shù)列滿足,求的前n項(xiàng)和.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)在等差數(shù)列中,,其前項(xiàng)和為,等比數(shù)列的各項(xiàng)均為正數(shù),,公比為,且

(Ⅰ)求;(Ⅱ)證明:

 

查看答案和解析>>

同步練習(xí)冊答案