【題目】已知函數(shù) 的定義域為集合A,函數(shù)g(x)=lg(x2﹣2x+a)的定義域為集合B. (Ⅰ)當(dāng)a=﹣8時,求A∩B;
(Ⅱ)若A∩RB={x|﹣1<x≤3},求a的值.
【答案】解:( I)函數(shù) 有意義,
則有 ,
解得﹣1<x≤5,
當(dāng)a=﹣8時,g(x)=lg(x2﹣2x﹣8),
所以x2﹣2x﹣8>0,
解得x>4或x<﹣2,
所以A∩B={x|4<x≤5};
(II)RB={x|x2﹣2x+a≤0}={x|x1≤x≤x2},
由A∩(RB)={x|﹣1<x≤3},
可得x1≤﹣1,x2=3,
將x2=3帶入方程,解得a=﹣3,x1=﹣1,滿足題意,
所以a=﹣3.
【解析】( I)求出函數(shù)f(x)、g(x)的定義域,再根據(jù)交集的定義寫出A∩B;( II)根據(jù)補集與交集的定義,結(jié)合一元二次不等式與方程的知識,即可求出a的值.
【考點精析】本題主要考查了集合的交集運算和交、并、補集的混合運算的相關(guān)知識點,需要掌握交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立;求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖是函數(shù)y=Asin(ωx+φ)(x∈R)在區(qū)間 上的圖象,為了得到這個函數(shù)的圖象,只要將y=sinx(x∈R)的圖象上所有的點( )
A.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的 倍,縱坐標不變
B.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
C.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的 倍,縱坐標不變
D.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣ x+ ,若數(shù)列{bn}滿足:b1=1,bn+1=2f(bn)(n∈N*).若對n∈N* , 都M∈Z,使得 <M恒成立,則整數(shù)M的最小值是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為比較甲,乙兩地某月14時的氣溫,隨機選取該月中的5天,將這5天中14時的氣溫數(shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:
①甲地該月14時的平均氣溫低于乙地該月14時的平均氣溫;
②甲地該月14時的平均氣溫高于乙地該月14時的平均氣溫;
③甲地該月14時的氣溫的標準差小于乙地該月14時的氣溫的標準差;
④甲地該月14時的氣溫的標準差大于乙地該月14時的氣溫的標準差.
其中根據(jù)莖葉圖能得到的統(tǒng)計結(jié)論的編號為( )
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1(﹣1,0),F(xiàn)2(1,0)是橢圓C1與雙曲線C2共同的焦點,橢圓的一個短軸端點為B,直線F1B與雙曲線的一條漸近線平行,橢圓C1與雙曲線C2的離心率分別為e1 , e2 , 則e1+e2取值范圍為( )
A.[2,+∞)
B.[4,+∞)
C.(4,+∞)
D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為四棱錐P﹣ABCD的表面展開圖,四邊形ABCD為矩形, ,AD=1.已知頂點P在底面ABCD上的射影為點A,四棱錐的高為 ,則在四棱錐P﹣ABCD中,PC與平面ABCD所成角的正切值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|2x≥16},B={x|log2x≥a}.
(1)當(dāng)a=1時,求A∩B;
(2)若A是B的子集,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科技研究所對一批新研發(fā)的產(chǎn)品長度進行檢測(單位:mm),如圖是檢測結(jié)果的頻率分布直方圖,據(jù)此估計這批產(chǎn)品的中位數(shù)為( )
A.20
B.22.5
C.22.75
D.25
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com