為了降低能源損耗,某體育館的外墻需要建造隔熱層.體育館要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度(單位:cm)滿足關(guān)系:(,為常數(shù)),若不建隔熱層,每年能源消耗費用為8萬元.設(shè)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求的值及的表達(dá)式;
(2)隔熱層修建多厚時,總費用達(dá)到最。坎⑶笞钚≈担
(1);(2)即隔熱層修建厚時,總費用達(dá)到最小,最小值為70萬元.
解析試題分析:(1)由建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系: (0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.我們可得C(0)=8,得k=40,進(jìn)而得到C(x)=.建造費用為C1(x)=6x,則根據(jù)隔熱層建造費用與20年的能源消耗費用之和為f(x),我們不難得到f(x)的表達(dá)式.
(2)由(1)中所求的f(x)的表達(dá)式,我們利用導(dǎo)數(shù)法,求出函數(shù)f(x)的單調(diào)性,然后根據(jù)函數(shù)單調(diào)性易求出總費用f(x)的最小值.
(1)當(dāng)時,,, 2分
5分
(2), 7分
設(shè),.
當(dāng)且僅當(dāng)這時,因此的最小值為70.
即隔熱層修建厚時,總費用達(dá)到最小,最小值為70萬元. 10分
考點:函數(shù)模型的選擇與應(yīng)用;函數(shù)最值的應(yīng)用;利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
某房地產(chǎn)開發(fā)公司計劃在一樓區(qū)內(nèi)建造一個長方形公園ABCD,公園由形狀為長方形A1B1C1D1的休閑區(qū)和環(huán)公園人行道(陰影部分)組成.已知休閑區(qū)A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10米(如圖所示).
(1)若設(shè)休閑區(qū)的長和寬的比=x(x>1),求公園ABCD所占面積S關(guān)于x的函數(shù)S(x)的解析式;
(2)要使公園所占面積最小,則休閑區(qū)A1B1C1D1的長和寬該如何設(shè)計?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知焦點在y軸,頂點在原點的拋物線C1經(jīng)過點P(2,2),以C1上一點C2為圓心的圓過定點A(0,1),記為圓與軸的兩個交點.
(1)求拋物線的方程;
(2)當(dāng)圓心在拋物線上運(yùn)動時,試判斷是否為一定值?請證明你的結(jié)論;
(3)當(dāng)圓心在拋物線上運(yùn)動時,記,,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,某小區(qū)擬在空地上建一個占地面積為2400平方米的矩形休閑廣場,按照設(shè)計要求,休閑廣場中間有兩個完全相同的矩形綠化區(qū)域,周邊及綠化區(qū)域之間是道路(圖中陰影部分),道路的寬度均為2米.怎樣設(shè)計矩形休閑廣場的長和寬,才能使綠化區(qū)域的總面積最大?并求出其最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
某商品進(jìn)貨價每件50元,據(jù)市場調(diào)查,當(dāng)銷售價格(每件x元)為50<x≤80時,每
天售出的件數(shù)為,若要使每天獲得的利潤最多,銷售價格每件應(yīng)定為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com