已知橢圓方程為=1(a>b>0),它的一個頂點為M(0,1),離心率e,則橢圓的方程為(  ).
A.=1B.=1C.y2=1D.y2=1
D
依題意得解得所以橢圓的方程為y2=1
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,且經(jīng)過點. 過它的兩個焦點分別作直線,交橢圓于A、B兩點,交橢圓于C、D兩點,且

(1)求橢圓的標準方程;
(2)求四邊形的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓和雙曲線有相同的焦點是它們的一個交點,則的形狀是(   )
A.銳角三角形B.直角三角形
C.鈍角三角形D.隨的變化而變化

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

F1,F2分別是橢圓Ex2=1(0<b<1)的左、右焦點,過F1的直線lE相交于A,B兩點,且|AF2|,|AB|,|BF2|成等差數(shù)列.
(1)求|AB|;
(2)若直線l的斜率為1,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓C=1(a>b>0)的離心率e,右焦點到直線=1的距離dO為坐標原點.
(1)求橢圓C的方程;
(2)過點O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點,證明,點O到直線AB的距離為定值,并求弦AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為橢圓上一點, 為橢圓的兩個焦點,且, 則(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖所示,橢圓(>b>0)的離心率e=,左焦點為F,A、B、C為其三個頂點,直線CF與AB交于D點,則tan∠BDC的值等于 (  )

A.3     B.
C.      D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若曲線為焦點在軸上的橢圓,則實數(shù),滿足(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的左、右焦點分別為,若橢圓上存在點P使,則該橢圓的離心率的取值范圍為___   

查看答案和解析>>

同步練習冊答案