【題目】由中央電視臺綜合頻道()和唯眾傳媒聯(lián)合制作的《開講啦》是中國首檔青年電視公開課,每期節(jié)目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現(xiàn)實的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時也在討論青春中國的社會問題,受到青年觀眾的喜愛,為了了解觀眾對節(jié)目的喜愛程度,電視臺隨機調(diào)查了A、B兩個地區(qū)共100名觀眾,得到如下的列聯(lián)表:

非常滿意

滿意

合計

A

30

y

B

x

z

合計

已知在被調(diào)查的100名觀眾中隨機抽取1名,該觀眾是地區(qū)當中“非常滿意”的觀眾的概率為0.35,且.請完成上述表格,并根據(jù)表格判斷是否有95%的把握認為觀眾的滿意程度與所在地區(qū)有關系?

附:參考公式:

0.050

0.010

0.001

3.841

6.635

10.828

【答案】見解析

【解析】

根據(jù)條件解得,再根據(jù)卡方公式求K2,最后根據(jù)參考數(shù)據(jù)作判斷.

解:由題意,得 ,所以 ,所以,

因為 ,所以

非常滿意

滿意

合計

A

30

15

45

B

35

20

55

合計

65

35

100

K2的觀測值

所以沒有90%的把握認為觀眾的滿意程度與所在地區(qū)有關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐,底面是邊長為2的菱形, ,且平面.

1證明:平面平面;

2若平面與平面的夾角為,試求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[2018·臨川一中]海盜船是一種繞水平軸往復擺動的游樂項目,因其外形仿照古代海盜船而得名.現(xiàn)有甲、乙兩游樂場統(tǒng)計了一天6個時間點參與海盜船游玩的游客數(shù)量,具體數(shù)據(jù)如表:

時間點

8

10

12

14

16

18

甲游樂場

10

3

12

6

12

20

乙游樂場

13

4

3

2

6

19

(1)從所給6個時間點中任選一個,求參與海盜船游玩的游客數(shù)量甲游樂場比乙游樂場少的概率;

(2)記甲、乙兩游樂場6個時間點參與海盜船游玩的游客數(shù)量分別為,),現(xiàn)從該6個時間點中任取2個,求恰有1個時間點滿足的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐的底面ABCD是邊長為a的菱形,ABCD,,E,F分別是CD,PC的中點.

1)求證:平面平面PAB;

2MPB上的動點,EM與平面PAB所成的最大角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,過點的直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,已知曲線的極坐標方程為,記直線與曲線分別交于兩點.

(1)求曲線的直角坐標方程;

(2)證明:成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 底面, , ,

1)求證:平面 平面;

2)若棱上存在一點,使得二面角的余弦值為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某服裝店對過去100天其實體店和網(wǎng)店的銷售量(單位:件)進行了統(tǒng)計,制成頻率分布直方圖如下:

(1)若將上述頻率視為概率,已知該服裝店過去100天的銷售中,實體店和網(wǎng)店銷售量都不低于50件的概率為0.24,求過去100天的銷售中,實體店和網(wǎng)店至少有一邊銷售量不低于50件的天數(shù);

(2)若將上述頻率視為概率,已知該服裝店實體店每天的人工成本為500元,門市成本為1200元,每售出一件利潤為50元,求該門市一天獲利不低于800元的概率;

(3)根據(jù)銷售量的頻率分布直方圖,求該服裝店網(wǎng)店銷售量中位數(shù)的估計值(精確到0.01).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合ABR中兩個子集,對于,定義: .①若;則對任意;②若對任意,則;③若對任意,則A,B的關系為.上述命題正確的序號是______. (請?zhí)顚懰姓_命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓,把圓上每一點的橫坐標伸長為原來的2倍,縱坐標不變,得到曲線,且傾斜角為,經(jīng)過點的直線與曲線交于兩點.

(1)當時,求曲線的普通方程與直線的參數(shù)方程;

(2)求點兩點的距離之積的最小值.

查看答案和解析>>

同步練習冊答案