在直角坐標(biāo)平面上有一點列P1,y1),P2(x2,y2),…,Pn(xn,yn),…,對一切正整數(shù)n,點Pn在函數(shù)的圖象上,且Pn的橫坐標(biāo)構(gòu)成以為首項,﹣1為公差的等差數(shù)列{xn}.
(1)求點Pn的坐標(biāo);
(2)設(shè)拋物線列,C2,C3,…,Cn,…中的每一條的對稱軸都垂直于x軸,拋物線Cn的頂點為Pn,且過點Dn(0,n2+1).記與拋物線Cn相切于點Dn的直線的斜率為kn,求;
(3)設(shè)S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差數(shù)列{}的任一項∈S∩T,其中a1是S∩T中的最大數(shù),﹣265<a10<﹣125,求數(shù)列{}的通項公式.
解:(1)∵,


(2)∵Cn的對稱軸垂直于x軸,且頂點為Pn
∴設(shè)Cn的方程為
把Dn(0,n2+1)代入上式,得a=1,
∴Cn的方程為y=+(2n+3)x+n2+1.
∵kn=y'|x=0=2n+3,
,
==
(3)T={y|y=﹣(12n+5),n∈N*}={y|y=﹣2(6n+1)﹣3,n∈N*},
∴S∩T=T,T中最大數(shù)a1=﹣17.
設(shè){}公差為d,則a10=﹣17+9d∈(﹣265,﹣125.)
由此得
又∵∈T.
∴d=﹣12m(m∈N*)
∴d=﹣24,
=7﹣24n(n∈N*,n≥2).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面上有一點列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對一切正整數(shù)n,點Pn在函數(shù)y=3x+
13
4
的圖象上,且Pn的橫坐標(biāo)構(gòu)成以-
5
2
為首項,-1為公差的等差數(shù)列{xn}.
(1)求點Pn的坐標(biāo);
(2)設(shè)拋物線列C1,C2,C3,…,Cn,…中的每一條的對稱軸都垂直于x軸,拋物線Cn的頂點為Pn,且過點Dn(0,n2+1).記與拋物線Cn相切于點Dn的直線的斜率為kn,求
1
k1k2
+
1
k2k3
+…+
1
kn-1kn

(3)設(shè)S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差數(shù)列{an}的任一項an∈S∩T,其中a1是S∩T中的最大數(shù),-265<a10<-125,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年聊城市四模理) (14分)  在直角坐標(biāo)平面上有一點列位于直線上,且Pn的橫坐標(biāo)構(gòu)成以為首項,-1為公差的等差數(shù)列{xn}.

   (1)求點Pn的坐標(biāo);

   (2)設(shè)拋物線列C1,C2,…,Cn,…中的每一條的對稱軸都垂直于x軸,第n條拋物線Cn的頂點為Pn,且經(jīng)過點Dn(0,n2+1). 記與拋物線Cn相切于點Dn的直線的斜率為kn,求證:

   (3)設(shè),等差數(shù)列{an}的任意一項,其中a1ST中的最大數(shù),且-256<a10­<-125,求數(shù)列{an}通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆江蘇省蘇州市紅心中學(xué)高三摸底考試數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)在直角坐標(biāo)平面上有一點列 對一切正整數(shù)n,點Pn在函數(shù)的圖象上,且Pn的橫坐標(biāo)構(gòu)成以為首項,-1為公差的等差數(shù)列{xn}.
(1)求點Pn的坐標(biāo);
(2)設(shè)拋物線列C1,C2,C3,…,Cn,…中的每一條的對稱軸都垂直于x軸,拋物線Cn的頂點為Pn,且過點Dn(0,).記與拋物線Cn相切于點Dn的直線的斜率為kn,求
(3)設(shè)等差數(shù)列的任一項,其中中的最大數(shù),,求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省蘇州市高三摸底考試數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)在直角坐標(biāo)平面上有一點列 對一切正整數(shù)n,點Pn在函數(shù)的圖象上,且Pn的橫坐標(biāo)構(gòu)成以為首項,-1為公差的等差數(shù)列{xn}.

(1)求點Pn的坐標(biāo);

(2)設(shè)拋物線列C1,C2,C3,…,Cn,…中的每一條的對稱軸都垂直于x軸,拋物線Cn的頂點為Pn,且過點Dn(0,).記與拋物線Cn相切于點Dn的直線的斜率為kn,求

(3)設(shè)等差數(shù)列的任一項,其中中的最大數(shù),,求數(shù)列的通項公式.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010集寧一中學(xué)高三年級理科數(shù)學(xué)第一學(xué)期期末考試試題 題型:解答題

在直角坐標(biāo)平面上有一點列,對一切正整數(shù),點位于函數(shù)的圖象上,且的橫坐標(biāo)構(gòu)成以為首項,­為公差的等差數(shù)列。

⑴求點的坐標(biāo);

⑵設(shè)拋物線列中的每一條的對稱軸都垂直于軸,第條拋物線的頂點為,且過點,記與數(shù)列相切于的直線的斜率為,求:。

⑶設(shè),等差數(shù)列的任一項,其中中的最大數(shù),,求的通項公式。

 

查看答案和解析>>

同步練習(xí)冊答案