【題目】選修4-5:不等式選講

已知函數(shù).

(Ⅰ)解不等式:

(Ⅱ)當時,函數(shù)的圖象與軸圍成一個三角形,求實數(shù)的取值范圍.

【答案】(1)(2)

【解析】試題分析:(Ⅰ)由已知,可按不等中兩個絕對值式的零點將實數(shù)集分為三部分進行分段求解,然后再綜合其所得解,從而求出所求不等式的解集;

(Ⅱ)由題意,可將的值分為進行分類討論,當時,函數(shù)不過原點,且最小值為,此時滿足題意;當時,函數(shù),再由函數(shù)的單調(diào)性及值域,求出實數(shù)的范圍,最后綜合兩種情況,從而得出實數(shù)的范圍.

試題解析:(Ⅰ)由題意知,原不等式等價于

,

解得,

綜上所述,不等式的解集為.

(Ⅱ)當時,則

此時的圖象與軸圍成一個三角形,滿足題意:

時, ,

則函數(shù)上單調(diào)遞減,在上單調(diào)遞增.

要使函數(shù)的圖象與軸圍成一個三角形,

,解得

綜上所述,實數(shù)的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】近期,某公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付,某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,用x表示活動推出的天數(shù),y表示每天使用掃碼支付的人次(單位:十人次),繪制了如圖所示的散點圖:

(I)根據(jù)散點圖判斷在推廣期內(nèi),(c,d為為大于零的常數(shù))哪一個適宜作為掃碼支付的人次y關(guān)于活動推出天數(shù)x的回歸方程類型?(給出判斷即可,不必說明理由)

(Ⅱ)根據(jù)(I)的判斷結(jié)果求y關(guān)于x的回歸方程,并預測活動推出第8天使用掃碼支付的人次.

參考數(shù)據(jù):

4

62

1.54

2535

50.12

140

3.47

其中,

附:對于一組數(shù)據(jù),…,,其回歸直線的斜率和截距的最小二乘估計分別為:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解學生喜歡校內(nèi)、校外開展活動的情況,某中學一課外活動小組在學校高一年級進行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學生的問卷成績(單位:分)進行統(tǒng)計,將數(shù)據(jù)按,分成五組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為類學生,低于60分的稱為類學生.

(1)根據(jù)已知條件完成下面列聯(lián)表,能否在犯錯誤的概率不超過的前提下認為性別與是否為類學生有關(guān)系?

合計

110

50

合計

(2)將頻率視為概率,現(xiàn)在從該校高一學生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中類學生的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列、期望和方差.

參考公式:,其中.

參考臨界值:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購是非常方便的購物方式,為了了解網(wǎng)購在我市的普及情況,某調(diào)查機構(gòu)進行了有關(guān)網(wǎng)購的調(diào)查問卷,并從參與調(diào)查的市民中隨機抽取了男女各100人進行分析,從而得到表(單位:人)

經(jīng)常網(wǎng)購

偶爾或不用網(wǎng)購

合計

男性

50

100

女性

70

100

合計

(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯誤的概率不超過0.01的前提下認為我市市民網(wǎng)購與性別有關(guān)?

(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購的概率;

②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機抽取10人贈送禮品,記其中經(jīng)常網(wǎng)購的人數(shù)為,求隨機變量的數(shù)學期望和方差.

參考公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】5名男生4名女生站成一排,求滿足下列條件的排法:

(1)女生都不相鄰有多少種排法?

(2)男生甲、乙、丙排序一定(只考慮位置的前后順序),有多少種排法?

(3)男甲不在首位,男乙不在末位,有多少種排法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(0<φ<π)

(1)當φ時,在給定的坐標系內(nèi),用“五點法”做出函數(shù)f(x)在一個周期內(nèi)的圖象;

(2)若函數(shù)f(x)為偶函數(shù),求φ的值;

(3)在(2)的條件下,求函數(shù)在[﹣π,π]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)面底面,底面為直角梯形,其中,,,,,點在棱上且,點為棱的中點.

在棱上且,點位棱的中點.

(1)證明:平面平面;

(2)求二面角的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

1)當時,求函數(shù)的最大值;

2)令,()其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;

3)當,,方程有唯一實數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)當時,求不等式的解集;

2)若不等式的解集包含[–11],求的取值范圍.

查看答案和解析>>

同步練習冊答案