已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/11/8/119ho3.png" style="vertical-align:middle;" />.設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求證:是定值;
(2)判斷并說明有最大值還是最小值,并求出此最大值或最小值.

(1)詳見解析;(2)有最小值2

解析試題分析:(1)設(shè)點(diǎn)P的坐標(biāo)為,則有,,用點(diǎn)到線的距離公式求,問題即可得證。(2)用基本不等式可求得的最小值。
試題解析:解答:(1)證明:設(shè)點(diǎn)P的坐標(biāo)為,則有,,  2分
由點(diǎn)到直線的距離公式可知,       4分
故有,即為定值,這個(gè)值為1.             6分
(2)有最小值,且最小值為2.                 7分
∵由(1)知,              8分
,                   10分
當(dāng)且僅當(dāng),點(diǎn)在時(shí),有最小值2.   12分
考點(diǎn):1點(diǎn)到線的距離公式,2基本不等式。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ex-e-x(x∈R且e為自然對(duì)數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性;
(2)是否存在實(shí)數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對(duì)一切x都成立?若存在,求出t;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x2bxc(b,c∈R),對(duì)任意的x∈R,恒有f′(x)≤f(x).
(1)證明:當(dāng)x≥0時(shí),f(x)≤(xc)2
(2)若對(duì)滿足題設(shè)條件的任意b,c,不等式f(c)-f(b)≤M(c2b2)恒成立,求M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=a為常數(shù)且a∈(0,1).
(1)當(dāng)a=時(shí),求f;
(2)若x0滿足f[f(x0)]=x0,但f(x0)≠x0,則稱x0為f(x)的二階周期點(diǎn).證明函數(shù)f(x)有且僅有兩個(gè)二階周期點(diǎn),并求二階周期點(diǎn)x1,x2;
(3)對(duì)于(2)中的x1,x2,設(shè)A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),記△ABC的面積為S(a),求S(a)在區(qū)間[,]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=loga(x+1)(a>1),若函數(shù)yg(x)的圖象上任意一點(diǎn)P關(guān)于原點(diǎn)對(duì)稱的點(diǎn)Q的軌跡恰好是函數(shù)f(x)的圖象.
(1)寫出函數(shù)g(x)的解析式;
(2)當(dāng)x∈[0,1)時(shí)總有f(x)+g(x)≥m成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是定義在上的奇函數(shù),當(dāng)時(shí),.
(1)求
(2)求的解析式;
(3)若,求區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)當(dāng),函數(shù)有且僅有一個(gè)零點(diǎn),且時(shí),求的值;
(Ⅱ)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)  ().
(1)若為偶函數(shù),求實(shí)數(shù)的值;
(2)已知,若對(duì)任意都有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x2+ax+b的兩個(gè)零點(diǎn)是-2和3,解不等式bf(ax)>0;

查看答案和解析>>

同步練習(xí)冊(cè)答案