【題目】已知數(shù)列 都是單調(diào)遞增數(shù)列,若將這兩個數(shù)列的項按由小到大的順序排成一列(相同的項視為一項),則得到一個新數(shù)列.

(1)設(shè)數(shù)列、分別為等差、等比數(shù)列,若, , ,求;

(2)設(shè)的首項為1,各項為正整數(shù), ,若新數(shù)列是等差數(shù)列,求數(shù)列 的前項和

(3)設(shè)是不小于2的正整數(shù)),,是否存在等差數(shù)列,使得對任意的,在之間數(shù)列的項數(shù)總是?若存在,請給出一個滿足題意的等差數(shù)列;若不存在,請說明理由.

【答案】(1)49;(2);(3)首項,公差的等差數(shù)列符合題意.

【解析】試題分析:

(1)由題意可得 ;

(2)由題意可得等比數(shù)列的項都是等差數(shù)列中的項,所以. 數(shù)列的前項和.

(3) 存在等差數(shù)列,只需首項,公差.利用題中的結(jié)論可證得此命題成立.

試題解析:

解:(1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,

由題意得, ,解得,因數(shù)列單調(diào)遞增,

所以,所以, ,所以, . 因為, , , ,

所以.

(2)設(shè)等差數(shù)列的公差為,又,且,

所以,所以. 因為中的項,所以設(shè),即.

時,解得,不滿足各項為正整數(shù);

時, ,此時,只需取,而等比數(shù)列的項都是等差數(shù)列中的項,所以;

時, ,此時,只需取,

,得, 是奇數(shù), 是正偶數(shù), 有正整數(shù)解,

所以等比數(shù)列的項都是等差數(shù)列中的項,所以. 綜上所述,數(shù)列的前項和.

(3)存在等差數(shù)列,只需首項,公差.

下證之間數(shù)列的項數(shù)為. 即證對任意正整數(shù),都有,

成立.

.

所以首項,公差的等差數(shù)列符合題意.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】從參加某次高中英語競賽的學生中抽出100名,將其成績整理后,繪制頻率分布直方圖(如圖所示).其中樣本數(shù)據(jù)分組區(qū)間為: , , , .

Ⅰ)試求圖中的值,并計算區(qū)間上的樣本數(shù)據(jù)的頻率和頻數(shù);

試估計這次英語競賽成績的眾數(shù)、中位數(shù)及平均成績結(jié)果精確到.

注:同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,平面底面,,,,的中點,側(cè)棱

(1)求證:平面;

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,橢圓E的中心為坐標原點,焦點軸上,且在拋物線的準線上,點是橢圓E上的一個動點, 面積的最大值為.

(Ⅰ)求橢圓E的方程;

(Ⅱ)過焦點作兩條平行直線分別交橢圓E于四個點.

①試判斷四邊形能否是菱形,并說明理由;

②求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本題滿分12分已知極坐標系的極點與直角坐標系的原點重合極軸與直角坐標系的x軸的正半軸重合,且兩個坐標系的單位長度相同已知直線l的參數(shù)方程為t為參數(shù),曲線C的極坐標方程為

若直線l的斜率為-1求直線l與曲線C交點的極坐標;

若直線l與曲線C相交弦長為,求直線l的參數(shù)方程標準形式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖1,平行四邊形中, ,現(xiàn)將沿折起,得到三棱錐(如圖2),且,點為側(cè)棱的中點.

(1)求證: 平面

(2)求三棱錐的體積;

(3)在的角平分線上是否存在點,使得平面?若存在,求的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】天氣預(yù)報是氣象專家根據(jù)預(yù)測的氣象資料和專家們的實際經(jīng)驗,經(jīng)過分析推斷得到的,在現(xiàn)實的生產(chǎn)生活中有著重要的意義.某快餐企業(yè)的營銷部門經(jīng)過對數(shù)據(jù)分析發(fā)現(xiàn),企業(yè)經(jīng)營情況與降雨天數(shù)和降雨量的大小有關(guān).

(Ⅰ)天氣預(yù)報說,在今后的四天中,每一天降雨的概率均為,求四天中至少有兩天降雨的概率;

(Ⅱ)經(jīng)過數(shù)據(jù)分析,一天內(nèi)降雨量的大小(單位:毫米)與其出售的快餐份數(shù)成線性相關(guān)關(guān)系,該營銷部門統(tǒng)計了降雨量與出售的快餐份數(shù)的數(shù)據(jù)如下:

降雨量(毫米)

1

2

3

4

5

快餐數(shù)(份)

50

85

115

140

160

試建立關(guān)于的回歸方程,為盡量滿足顧客要求又不造成過多浪費,預(yù)測降雨量為6毫米時需要準備的快餐份數(shù).(結(jié)果四舍五入保留整數(shù))

附注:回歸方程中斜率和截距的最小二乘估計公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年5月20日,針對部分“二線城市”房價上漲過快,媒體認為國務(wù)院常務(wù)會議可能再次確定五條措施(簡稱“國五條”).為此,記者對某城市的工薪階層關(guān)于“國五條”態(tài)度進行了調(diào)查,隨機抽取了人,作出了他們的月收入的頻率分布直方圖(如圖),同時得到了他們的月收入情況與“國五條”贊成人數(shù)統(tǒng)計表(如下表):

月收入(百元)

贊成人數(shù)

(1)試根據(jù)頻率分布直方圖估計這人的中位數(shù)和平均月收入;

(2)若從月收入(單位:百元)在的被調(diào)查者中隨機選取人進行追蹤調(diào)查,求被選取的人都不贊成的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,順次連接橢圓的四個頂點得到的四邊形的面積為,點.

(Ⅰ)求橢圓的方程.

(Ⅱ)已知點,是橢圓上的兩點.

(。┤,且為等邊三角形,求的面積;

(ⅱ)若,證明: 不可能為等邊三角形.

查看答案和解析>>

同步練習冊答案