【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)軸為極軸的極坐標(biāo)系中,曲線:(為極角).
(1)將曲線化為極坐標(biāo)方程,當(dāng)時(shí),將化為直角坐標(biāo)方程;
(2)若曲線與相交于一點(diǎn),求點(diǎn)的直角坐標(biāo)使到定點(diǎn)的距離最小.
【答案】(1) ,, (2)
【解析】試題分析:(1)利用平方關(guān)系消參得到曲線的普通方程進(jìn)而化為極坐標(biāo)方程,由化簡(jiǎn)得,即可得到化為直角坐標(biāo)方程;
(2)當(dāng)點(diǎn)到定點(diǎn)的距離最小時(shí),的延長(zhǎng)線過(guò)(1,0),此時(shí)所在直線的傾斜角為,數(shù)形結(jié)合可得結(jié)果.
試題解析:
(Ⅰ)由的參數(shù)方程得,化簡(jiǎn)得,
則,.
由化簡(jiǎn)得,
則:.
(Ⅱ)當(dāng)點(diǎn)到定點(diǎn)的距離最小時(shí),的延長(zhǎng)線過(guò)(1,0),
此時(shí)所在直線的傾斜角為,
由數(shù)形結(jié)合可知,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱中,為正三角形,點(diǎn)在棱上,且,點(diǎn),分別為棱,的中點(diǎn).
(1)證明:平面;
(2)若,求直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)經(jīng)過(guò)橢圓的右焦點(diǎn)的直線與橢圓交于、兩點(diǎn),、分別為橢圓的左、右頂點(diǎn),記與的面積分別為和,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的普通方程,并說(shuō)明其表示什么軌跡;
(2)若直線的極坐標(biāo)方程為,試判斷直線與曲線的位置關(guān)系,若相交,請(qǐng)求出其弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】二進(jìn)制規(guī)定:每個(gè)二進(jìn)制數(shù)由若干個(gè)0、1組成,且最高位數(shù)字必須為1.若在二進(jìn)制中,是所有位二進(jìn)制數(shù)構(gòu)成的集合,對(duì)于,,表示和對(duì)應(yīng)位置上數(shù)字不同的位置個(gè)數(shù).例如當(dāng),時(shí),當(dāng),時(shí).
(1)令,求所有滿足,且的的個(gè)數(shù);
(2)給定,對(duì)于集合中的所有,求的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
()設(shè),討論函數(shù)的單調(diào)性.
()設(shè),求證:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與橢圓相交于兩點(diǎn),與軸, 軸分別相交于點(diǎn)和點(diǎn),且,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn), 的延長(zhǎng)線交橢圓于點(diǎn),過(guò)點(diǎn)分別做軸的垂線,垂足分別為.
(1) 若橢圓的左、右焦點(diǎn)與其短軸的一個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)在橢圓上,求橢圓的方程;
(2)當(dāng)時(shí),若點(diǎn)平分線段,求橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的左焦點(diǎn)為,上頂點(diǎn)為,長(zhǎng)軸長(zhǎng)為,為直線:上的動(dòng)點(diǎn),,.當(dāng)時(shí),與重合.
(1)若橢圓的方程;
(2)若直線交橢圓于,兩點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三棱柱的所有棱長(zhǎng)均,為棱(不包括端點(diǎn))上一動(dòng)點(diǎn),是的中點(diǎn).
(Ⅰ)若,求的長(zhǎng);
(Ⅱ)當(dāng)在棱(不包括端點(diǎn))上運(yùn)動(dòng)時(shí),求平面與平面的夾角的余弦值的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com