已知圓C過定點F(-
1
4
,0),且與直線x=
1
4
相切,圓心C的軌跡為E,曲線E與直線l:y=k(x+1)(k∈R)相交于A、B兩點.
(I)求曲線E的方程;
(II)當△OAB的面積等于
10
時,求k的值;
(I)由題意,點C到定點(-
1
4
,0)和直線x=
1
4
的距離相等,
所以點C的軌跡方程為y2=-x
(II)由方程組
y2=-x
y=k(x+1)
消去x,整理得ky2+y-k=0
設(shè)點A(x1,y1),B(x2,y2),則y1+y2=-
1
k
,y1y2=-1
設(shè)直線l與x軸的交點為N,則N(-1,0)
∵S△OAB=S△OAN+S△OBN=
1
2
|ON||y1|+
1
2
|ON||y2|=
1
2
•1•
(y1+y2)2-4y1y2
=
1
2
(
1
k
)
2
+4

∵S△OAB=
10
,求得k=±
1
6
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線l過拋物線C的焦點,且與C的對稱軸垂直.l與C交于A,B兩點,|AB|=12,P為C的準線上一點,則△ABP的面積為( 。
A.18B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線C的漸近線為y=±
3
x
且過點M(1,
2
).
(1)求雙曲線C的方程;
(2)若直線y=ax+1與雙曲線C相交于A,B兩點,O為坐標原點,若OA與OB垂直,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知焦距為4的橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
左、右頂點分別為A、B,橢圓C的右焦點為F,
過F作一條垂直于x軸的直線與橢圓相交于R、S,若線段RS的長為
10
3

(1)求橢圓C的方程;
(2)設(shè)Q(t,m)是直線x=9上的點,直線QA、QB與橢圓C分別交于點M、N,求證:直線MN必過x軸上的一定點,并求出此定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知動圓過定點D(1,0),且與直線l:x=-1相切.
(1)求動圓圓心M的軌跡C;
(2)過定點D(1,0)作直線l交軌跡C于A、B兩點,E是D點關(guān)于坐標原點O的對稱點,求證:∠AED=∠BED.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左右焦點,Q是雙曲線上動點,從左焦點引∠F1QF2的平分線的垂線,垂足為P,則P點的軌跡是(  )的一部分.
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線l與橢圓C:
x2
3
+
y2
2
=1
交于P(x1,y1),Q(x2,y2)兩不同點,且△OPQ的面積S△OPQ=
6
2
,其中O為坐標原點.
(Ⅰ)證明x12+x22和y12+y22均為定值;
(Ⅱ)設(shè)線段PQ的中點為M,求|OM|•|PQ|的最大值;
(Ⅲ)橢圓C上是否存在點D,E,G,使得S△ODE=S△ODG=S△OEG=
6
2
?若存在,判斷△DEG的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點P(x,y)滿足橢圓方程2x2+y2=1,則
y
x-1
的最大值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
2
3
3
,且過點P(
6
,1).
(Ⅰ)求雙曲線C的方程;
(Ⅱ)若直線l:y=kx+
2
與雙曲線C恒有兩個不同的交點A和B,且
OA
OB
>2(O為坐標原點),求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案