【題目】在區(qū)間[﹣5,5]內(nèi)隨機地取出一個數(shù)a,則恰好使1是關(guān)于x的不等式2x2+ax﹣a2<0的一個解的概率大小為

【答案】0.7
【解析】解:本題是幾何概型問題,測度為長度. 由恰好使1是關(guān)于x的不等式2x2+ax﹣a2<0得:2×12+a×1﹣a2<0a<﹣1或a>2.
∴“恰好使1是關(guān)于x的不等式2x2+ax﹣a2<0的一個解的概率”事件對應的區(qū)域長度為7.
則恰好使1是關(guān)于x的不等式2x2+ax﹣a2<0的一個解的概率是
所以答案是:0.7.

【考點精析】本題主要考查了幾何概型的相關(guān)知識點,需要掌握幾何概型的特點:1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),在以O為極點,x軸的正半軸為極軸的極坐標系中,直線l: (m為常數(shù)).
(1)求曲線C的普通方程與直線l的直角坐標方程;
(2)若直線l與曲線C相交于A、B兩點,當|AB|=4時,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知過拋物線E:x2=4y的焦點F的直線交拋物線E與A、C兩點,經(jīng)過點A的直線l1分別交y軸、拋物線E于點D、B(B與C不重合),∠FAD=∠FDA,經(jīng)過點C作拋物線E的切線為l2
(Ⅰ)求證:l1∥l2;
(Ⅱ)求三角形ABC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】閱讀程序框圖,該算法的功能是輸出(
A.數(shù)列{2n1}的前 4項的和
B.數(shù)列{2n﹣1}的第4項
C.數(shù)列{2n}的前5項的和
D.數(shù)列{2n﹣1}的第5項

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABEF所在的平面與△ABC所在的平面相互垂直,AB=4,BC= ,BC⊥BE,∠ABE=

(1)求證:BC⊥平面ABEF;
(2)求平面ACF與平面BCE所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知非空有限實數(shù)集S的所有非空子集依次記為S1 , S2 , S3 , …,集合Sk中所有元素的平均值記為bk . 將所有bk組成數(shù)組T:b1 , b2 , b3 , …,數(shù)組T中所有數(shù)的平均值記為m(T).
(1)若S={1,2},求m(T);
(2)若S={a1 , a2 , …,an}(n∈N* , n≥2),求m(T).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,且.

1)證明:若,則是偶數(shù);

2)設,且,求實數(shù)的值;

3)設,求證:;并求滿足的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)統(tǒng)計,截至2016年底全國微信注冊用戶數(shù)量已經(jīng)突破9.27億,為調(diào)查大學生這個微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從某市大學生中隨機抽取100位同學進行了抽樣調(diào)查,結(jié)果如下:

微信群數(shù)量(個)

頻數(shù)

頻率

0~4

0.15

5~8

40

0.4

9~12

25

13~16

a

c

16以上

5

b

合計

100

1

(Ⅰ)求a,b,c的值及樣本中微信群個數(shù)超過12的概率;
(Ⅱ)若從這100位同學中隨機抽取2人,求這2人中恰有1人微信群個數(shù)超過12的概率;
(Ⅲ)以(1)中的頻率作為概率,若從全市大學生中隨機抽取3人,記X表示抽到的是微信群個數(shù)超過12的人數(shù),求X的分布列和數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,長方形的邊AB=2,BC=1,O是AB的中點,點P沿著邊BC,CD與DA運動,記BOP=x,將動點P到A,B兩點距離之和表示為x的函數(shù)f(x),則圖像大致為()

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案