【題目】已知f(x)=|x﹣a|+|x﹣1| (Ⅰ)當a=2,求不等式f(x)<4的解集;
(Ⅱ)若對任意的x,f(x)≥2恒成立,求a的取值范圍.

【答案】解:(Ⅰ)當a=2時,不等式f(x)<4,即|x﹣2|+|x﹣1|<4, 可得 ,或 ,
解得:﹣ <x< ,所以不等式的解集為{x|﹣ <x< }.
(Ⅱ)∵|x﹣a|+|x﹣1|≥|a﹣1|,當且僅當(x﹣a)(x﹣1)≤0時等號成立,
由|a﹣1|≥2,得a≤﹣1或a≥3,
即a的取值范圍為(﹣∞,﹣1]∪[3,+∞)
【解析】(Ⅰ)將a的值帶入,通過討論x的范圍,求出不等式的解集即可;(Ⅱ)根據絕對值的性質得到關于a的不等式,解出即可.
【考點精析】關于本題考查的絕對值不等式的解法,需要了解含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】從某校高三年級隨機抽取一個班,對該班50名學生的高校招生體檢表中的視力情況進行統(tǒng)計,其頻率分布直方圖如圖所示.若某高校A專業(yè)對視力的要求在0.9以上,則該班學生中能報A專業(yè)的人數(shù)為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是等比數(shù)列,且a2013+a2015= dx,則a2014(a2012+2a2014+a2016)的值為(
A.π2
B.2π
C.π
D.4π2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,銳角三角形ABC的內心為I,過點A作直線BI的垂線,垂足為H,點E為圓I與邊CA的切點.

(1)求證A,I,H,E四點共圓;
(2)若∠C=50°,求∠IEH的度數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和為Sn , 且Sn=﹣1+2an(Ⅰ)求{an}的通項公式;
(Ⅱ)若bn=log2an+1 , 且數(shù)列{bn}的前n項和為Tn , 求 +…+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為菱形,∠ABC=60°,E是BC中點,M是PD上的中點,F(xiàn)是PC上的動點. (Ⅰ)求證:平面AEF⊥平面PAD
(Ⅱ)直線EM與平面PAD所成角的正切值為 ,當F是PC中點時,求二面角C﹣AF﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】點S、A、B、C在半徑為 的同一球面上,點S到平面ABC的距離為 ,AB=BC=CA= ,則點S與△ABC中心的距離為(
A.
B.
C.1
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2ln(x+1)+ ﹣(m+1)x有且只有一個極值. (Ⅰ)求實數(shù)m的取值范圍;
(Ⅱ)若f(x1)=f(x2)(x1≠x2),求證:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場在店慶日進行抽獎促銷活動,當日在該店消費的顧客可參加抽獎.抽獎箱中有大小完全相同的4個小球,分別標有字“生”“意”“興”“隆”.顧客從中任意取出1個球,記下上面的字后放回箱中,再從中任取1個球,重復以上操作,最多取4次,并規(guī)定若取出“隆”字球,則停止取球.獲獎規(guī)則如下:依次取到標有“生”“意”“興”“隆”字的球為一等獎;不分順序取到標有“生”“意”“興”“隆”字的球,為二等獎;取到的4個球中有標有“生”“意”“興”三個字的球為三等獎. (Ⅰ)求分別獲得一、二、三等獎的概率;
(Ⅱ)設摸球次數(shù)為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案