已知雙曲線
x2
a2
-
y2
b2
=1(b>a>0)
,O為坐標(biāo)原點(diǎn),離心率e=2,點(diǎn)M(
5
,
3
)
在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P,Q兩點(diǎn),且
OP
OQ
=0
.問:
1
|OP|2
+
1
|OQ|2
是否為定值?若是請求出該定值,若不是請說明理由.
(1)∵離心率e=2,點(diǎn)M(
5
,
3
)
在雙曲線上,∴
5
a2
-
3
b2
=1
c
a
=2
c2=a2+b2
,解得
a2=4
b2=12
c2=16

故所求雙曲線的方程為
x2
4
-
y2
12
=1

(2)設(shè)直線OP方程為y=kx(k≠0),聯(lián)立3x2-y2=12.
聯(lián)立
y=kx
3x2-y2=12
解得
x2=
12
3-k2
y2=
12k2
3-k2
,∴|OP|2=x2+y2=
12(k2+1)
3-k2

則OQ方程為y=-
1
k
x
,同理解得|OQ|2=
12(k2+1)
3k2-1
..
1
|OP|2
+
1
|OQ|2
=
3-k2+3k2-1
12(k2+1)
=
1
6
.是定值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,右焦點(diǎn)為(2
2
,0).斜率為1的直線l與橢圓G交于A,B兩點(diǎn),以AB為底邊作等腰三角形,頂點(diǎn)為P(-3,2).
(Ⅰ)求橢圓G的方程;
(Ⅱ)求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線y2=2px(p>0)的焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),拋物線準(zhǔn)線與x軸交于C點(diǎn),若∠CBF=90°,則|AF|-|BF|的值為(  )
A.
p
2
B.pC.
3p
2
D.2p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線y=kx+1與曲線x=
1-4y2
有兩個(gè)不同的交點(diǎn),則k的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓E的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率e=
2
3
,過點(diǎn)C(-1,0)的直線l交橢圓于A、B兩點(diǎn),且滿足:
CA
BC
(λ≥2).
(1)若λ為常數(shù),試用直線l的斜率k(k≠0)表示三角形OAB的面積;
(2)若λ為常數(shù),當(dāng)三角形OAB的面積取得最大值時(shí),求橢圓E的方程;
(3)若λ變化,且λ=k2+1,試問:實(shí)數(shù)λ和直線l的斜率k(k∈R)分別為何值時(shí),橢圓E的短半軸長取得最大值?并求出此時(shí)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

雙曲線E的漸近線方程為y=±
4
3
x
,且經(jīng)過點(diǎn)(2
3
,
4
3
3
)

(1)求雙曲線E的方程;
(2)F1,F(xiàn)2為雙曲線E的兩個(gè)焦點(diǎn),P為雙曲線上一點(diǎn),若|PF1|•|PF2|=32,求∠F1PF2的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)A(1,1)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上一點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的兩焦點(diǎn),且滿足|AF1|+|AF2|=4.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)求過A(1,1)與橢圓相切的直線方程;
(III)設(shè)點(diǎn)C、D是橢圓上兩點(diǎn),直線AC、AD的傾斜角互補(bǔ),試判斷直線CD的斜率是否為定值?若是定值,求出定值;若不是定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,且橢圓Γ的右焦點(diǎn)F與拋物線y2=4x的焦點(diǎn)重合.
(Ⅰ)求橢圓Γ的標(biāo)準(zhǔn)方程;
(Ⅱ)過左焦點(diǎn)F的直線l與橢圓交于A,B兩點(diǎn),是否存在直線l,使得OA⊥OB,O為坐標(biāo)原點(diǎn),若存在,求出l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在同一坐標(biāo)系中,方程
x2
a2
+
y2
b2
=1
與bx2=-ay(a>b>0)表示的曲線大致是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案