醫(yī)生的專業(yè)能力參數(shù)K可有效衡量醫(yī)生的綜合能力,K越大,綜合能力越強(qiáng),并規(guī)定:能力參數(shù)K不少于30稱為合格,不少于50稱為優(yōu)秀.某市衛(wèi)生管理部門隨機(jī)抽取300名醫(yī)生進(jìn)行專業(yè)能力參數(shù)考核,得到如圖所示的能力K的頻率分布直方圖:

(1)求出這個樣本的合格率、優(yōu)秀率;
(2)現(xiàn)用分層抽樣的方法從中抽出一個樣本容量為20的樣本,再從這20名醫(yī)生中隨機(jī)選出2名.
①求這2名醫(yī)生的能力參數(shù)K為同一組的概率;
②設(shè)這2名醫(yī)生中能力參數(shù)K為優(yōu)秀的人數(shù)為X,求隨機(jī)變量X的分布列和期望.
【答案】分析:(1)根據(jù)合格率、優(yōu)秀率的意義即可得出;
(2)利用分層抽樣的方法、古典概型的概率計(jì)算公式、隨機(jī)變量的分布列和期望即可得出.
解答:解:(1)解:各組的頻率依次為0.2,0.3,0.2,0.15,0.1,0.05,
∴這個樣本的合格率為1-0.2=0.8,
優(yōu)秀率為0.15+0.1+0.05=0.3.
(2)①用分層抽樣抽出的樣本容量為20的樣本中,各組人數(shù)依次為4,6,4,3,2,1.
從20名醫(yī)生中隨機(jī)選出2名的方法數(shù)為,
選出的2名醫(yī)生的能力參數(shù)K為同一組的方法數(shù)為
故這2名醫(yī)生的能力參數(shù)K為同一組的概率
②20名醫(yī)生中能力參數(shù)K為優(yōu)秀的有6人,不是優(yōu)秀的有14人.
依題意,X的所有可能取值為0,1,2,則,,
∴X的分布列為
X12
P
∴X的期望值
點(diǎn)評:熟練掌握合格率、優(yōu)秀率的意義、分層抽樣的方法、古典概型的概率計(jì)算公式、隨機(jī)變量的分布列和期望是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

醫(yī)生的專業(yè)能力參數(shù)K可有效衡量醫(yī)生的綜合能力,K越大,綜合能力越強(qiáng),并規(guī)定:能力參數(shù)K不少于30稱為合格,不少于50稱為優(yōu)秀.某市衛(wèi)生管理部門隨機(jī)抽取300名醫(yī)生進(jìn)行專業(yè)能力參數(shù)考核,得到如圖所示的能力K的頻率分布直方圖:

(1)求出這個樣本的合格率、優(yōu)秀率;
(2)現(xiàn)用分層抽樣的方法從中抽出一個樣本容量為20的樣本,再從這20名醫(yī)生中隨機(jī)選出2名.
    ①求這2名醫(yī)生的能力參數(shù)K為同一組的概率;
    ②設(shè)這2名醫(yī)生中能力參數(shù)K為優(yōu)秀的人數(shù)為X,求隨機(jī)變量X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江西省四校高二下學(xué)期第三次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

醫(yī)生的專業(yè)能力參數(shù)K可有效衡量醫(yī)生的綜合能力,K越大,綜合能力越強(qiáng),并規(guī)定:能力參數(shù)K不少于30稱為合格,不少于50稱為優(yōu)秀,某市衛(wèi)生管理部門隨機(jī)抽取300名醫(yī)生進(jìn)行專業(yè)能力參數(shù)考核,得到如圖所示的能力參數(shù)K的頻率頒布直方圖:

(1)求這個樣本的合格率、優(yōu)秀率,并估計(jì)能力參數(shù)K的平均值;

(2)現(xiàn)用分層抽樣的方法從中抽出一個樣本容量為20的樣本,再從這20名醫(yī)生中隨機(jī)選出2名。

①求這2名醫(yī)生的能力參數(shù)K為同一組的概率;

②設(shè)這2名醫(yī)生中能力參數(shù)K為優(yōu)秀的的人數(shù)為X,求隨機(jī)變量X的分布列和期望。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

醫(yī)生的專業(yè)能力參數(shù)K可有效衡量醫(yī)生的綜合能力,K越大,綜合能力越強(qiáng),并規(guī)定:能力參數(shù)K不少于30稱為合格,不少于50稱為優(yōu)秀.某市衛(wèi)生管理部門隨機(jī)抽取300名醫(yī)生進(jìn)行專業(yè)能力參數(shù)考核,得到如圖所示的能力K的頻率分布直方圖:

(1)求出這個樣本的合格率、優(yōu)秀率;
(2)現(xiàn)用分層抽樣的方法從中抽出一個樣本容量為20的樣本,再從這20名醫(yī)生中隨機(jī)選出2名.
①求這2名醫(yī)生的能力參數(shù)K為同一組的概率;
②設(shè)這2名醫(yī)生中能力參數(shù)K為優(yōu)秀的人數(shù)為X,求隨機(jī)變量X的分布列和期望.

查看答案和解析>>

同步練習(xí)冊答案