設集合s為非空實數(shù)集,若數(shù)η(ξ)滿足:
(1)對?x∈S,有x≤η(x≥ξ),即η(ξ)是S的上界(下界);
(2)對?a<η(a>ξ),?xo∈S,使得xo>a(xo<a),即η(ξ)是S的最。ㄗ畲螅┥辖纾ㄏ陆纾瑒t稱數(shù)η(ξ)為數(shù)集S的上(下)確界,記作η=supS(ξ=infS).
給出如下命題:
①若 S={x|x2<2},則 supS=-;
②若S={x|x=n|,x∈N},則infS=l;
③若A、B皆為非空有界數(shù)集,定義數(shù)集A+B={z|z=x+y,x∈A,y∈B},則sup(A+B)=supA+supB.
其中正確的命題的序號為    (填上所有正確命題的序號).
【答案】分析:①由上確界的定義可得supS=
②由下確界的定義可得infS=0;
③利用上下確界的定義即可證明正確.
解答:解:①由x2<2,得,∴,故①不正確;
②∵x∈N,∴infS=0,故②不正確;
③∵?x∈A,?y∈B,∴x≤supA,y≤supB,
∴z=x+y≤supA+supB,
∴sup(A+B)≤supA+supB;
同理supA+supB≤sup(A+B);
故sup(A+B)=supA+supB.
故③正確.
故答案為③.
點評:正確理解新定義是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•瀘州一模)設集合s為非空實數(shù)集,若數(shù)η(ξ)滿足:
(1)對?x∈S,有x≤η(x≥ξ),即η(ξ)是S的上界(下界);
(2)對?a<η(a>ξ),?xo∈S,使得xo>a(xo<a),即η(ξ)是S的最小(最大)上界(下界),則稱數(shù)η(ξ)為數(shù)集S的上(下)確界,記作η=supS(ξ=infS).
給出如下命題:
①若 S={x|x2<2},則 supS=-
2
;
②若S={x|x=n|,x∈N},則infS=l;
③若A、B皆為非空有界數(shù)集,定義數(shù)集A+B={z|z=x+y,x∈A,y∈B},則sup(A+B)=supA+supB.
其中正確的命題的序號為
(填上所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設集合s為非空實數(shù)集,若數(shù)η(ξ)滿足:
(1)對?x∈S,有x≤η(x≥ξ),即η(ξ)是S的上界(下界);
(2)對?a<η(a>ξ),?xo∈S,使得xo>a(xo<a),即η(ξ)是S的最。ㄗ畲螅┥辖纾ㄏ陆纾,則稱數(shù)η(ξ)為數(shù)集S的上(下)確界,記作η=supS(ξ=infS).
給出如下命題:
①若 S={x|x2<2},則 supS=-數(shù)學公式;
②若S={x|x=n|,x∈N},則infS=l;
③若A、B皆為非空有界數(shù)集,定義數(shù)集A+B={z|z=x+y,x∈A,y∈B},則sup(A+B)=supA+supB.
其中正確的命題的序號為________(填上所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:瀘州一模 題型:填空題

設集合s為非空實數(shù)集,若數(shù)η(ξ)滿足:
(1)對?x∈S,有x≤η(x≥ξ),即η(ξ)是S的上界(下界);
(2)對?a<η(a>ξ),?xo∈S,使得xo>a(xo<a),即η(ξ)是S的最。ㄗ畲螅┥辖纾ㄏ陆纾,則稱數(shù)η(ξ)為數(shù)集S的上(下)確界,記作η=supS(ξ=infS).
給出如下命題:
①若 S={x|x2<2},則 supS=-
2

②若S={x|x=n|,x∈N},則infS=l;
③若A、B皆為非空有界數(shù)集,定義數(shù)集A+B={z|z=x+y,x∈A,y∈B},則sup(A+B)=supA+supB.
其中正確的命題的序號為______(填上所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:2013年四川省瀘州市高考數(shù)學一模試卷(理科)(解析版) 題型:填空題

設集合s為非空實數(shù)集,若數(shù)η(ξ)滿足:
(1)對?x∈S,有x≤η(x≥ξ),即η(ξ)是S的上界(下界);
(2)對?a<η(a>ξ),?xo∈S,使得xo>a(xo<a),即η(ξ)是S的最小(最大)上界(下界),則稱數(shù)η(ξ)為數(shù)集S的上(下)確界,記作η=supS(ξ=infS).
給出如下命題:
①若 S={x|x2<2},則 supS=-;
②若S={x|x=n|,x∈N},則infS=l;
③若A、B皆為非空有界數(shù)集,定義數(shù)集A+B={z|z=x+y,x∈A,y∈B},則sup(A+B)=supA+supB.
其中正確的命題的序號為    (填上所有正確命題的序號).

查看答案和解析>>

同步練習冊答案