【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且asin B=-bsin.

(1)求A;

(2)若△ABC的面積S=c2,求sin C的值.

【答案】(1);(2)

【解析】

(1)利用正弦定理化簡(jiǎn)已知等式即得A=.(2)先根據(jù)△ABC的面積S=c2得到b=c,

再利用余弦定理得到a=c,再利用正弦定理求出sin C的值.

(1)因?yàn)閍sin B=-bsin,所以由正弦定理得sin A=-sin

即sin A=-sin A-cos A,化簡(jiǎn)得tan A=-

因?yàn)锳∈(0,π),所以A=.

(2)因?yàn)锳=,所以sin A=,由S=c2bcsin A=bc,得b=c,

所以a2=b2+c2-2bccos A=7c2,則a=c,由正弦定理得sin C=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的個(gè)數(shù)為: ( )

是“的充要條件”;

②“”是“”的必要不充分條件;

③“”是“直線(xiàn)與圓相切”的充分不必要條件

④“”是“”既不充分又不必要條件

A. 3 B. 4 C. 1 D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講
已知不等式|x+3|﹣2x﹣1<0的解集為(x0 , +∞)
(Ⅰ)求x0的值;
(Ⅱ)若函數(shù)f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零點(diǎn),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上,離心率為的橢圓過(guò)點(diǎn)

(1)求橢圓的方程;

(2)設(shè)橢圓與軸的非負(fù)半軸交于點(diǎn),過(guò)點(diǎn)作互相垂直的兩條直線(xiàn),分別交橢圓于兩點(diǎn),連接,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)國(guó)家“精準(zhǔn)扶貧,產(chǎn)業(yè)扶貧”的戰(zhàn)略,某市面向全市征召《扶貧政策》義務(wù)宣傳志愿者,從年齡在[20,45]的500名志愿者中隨機(jī)抽取100名,其年齡頻率分布直方圖如圖所示.
(1)求圖中x的值,并根據(jù)頻率分布直方圖估計(jì)這500名志愿者中年齡在[35,40)歲的人數(shù);
(2)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場(chǎng)的宣傳活動(dòng),再?gòu)倪@10名志愿者中選取3名擔(dān)任主要負(fù)責(zé)人.記這3名志愿者中“年齡低于35歲”的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形為正方形,四邊形為直角梯形,且 ,平面平面,

)求證: 平面

)若二面角為直二面角,

i)求直線(xiàn)與平面所成角的大。

ii)棱上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓M過(guò)C(1,-1),D(-1,1)兩點(diǎn),且圓心M在x+y-2=0上.

(1)求圓M的方程;

(2)設(shè)點(diǎn)P是直線(xiàn)3x+4y+8=0上的動(dòng)點(diǎn),PA,PB是圓M的兩條切線(xiàn),A,B為切點(diǎn),求四邊形PAMB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓C:的離心率為,其右焦點(diǎn)到橢圓C外一點(diǎn)的距離為,不過(guò)原點(diǎn)O的直線(xiàn)l與橢圓C相交于A,B兩點(diǎn),且線(xiàn)段AB的長(zhǎng)度為2.

1求橢圓C的方程;

2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C的圓心坐標(biāo)且與線(xiàn)y=3x+4相切,

(1)求圓C的方程;

(2)設(shè)直線(xiàn)與圓C交于M,N兩點(diǎn),那么以MN為直徑的圓能否經(jīng)過(guò)原點(diǎn),若能,請(qǐng)求出直線(xiàn)MN的方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案