精英家教網 > 高中數學 > 題目詳情
已知直線x+ky-3=0所經過的定點F恰好是橢圓C的一個焦點,且橢圓C上的點到點F的最大距離為8.
(1)求橢圓C的標準方程;
(2)已知圓O:x2+y2=1,直線l:mx+ny=1.試證明:當點P(m,n)在橢圓C上運動時,直線l與圓O恒相交,并求直線l被圓O所截得的弦長L的取值范圍.
【答案】分析:(1)由x+ky-3=0得,(x-3)+ky=0,所以F為(3,0).由題設知,由此可求出橢圓C的方程.
(2)因為點P(m,n)在橢圓C上運動,所以+=1.從而圓心O到直線l的距離d===<1.由此可求出直線l被圓O截得的弦長的取值范圍.
解答:解:(1)由x+ky-3=0得,(x-3)+ky=0,
所以直線過定點(3,0),即F為(3,0).
設橢圓C的方程為+=1(a>b>0),
解得
故所求橢圓C的方程為+=1.

(2)因為點P(m,n)在橢圓C上運動,所以+=1.
從而圓心O到直線l的距離
d===<1.
所以直線l與圓O恒相交.
又直線l被圓O截得的弦長
L=2=2=2,由于0≤m2≤25,
所以16≤m2+16≤25,則L∈[,],
即直線l被圓O截得的弦長的取值范圍是[,].
點評:本題考查直線和圓的綜合應用,解題時要認真審題,掌握橢圓方程的求解方法,注意弦長公式的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知直線x+ky-3=0所經過的定點F恰好是橢圓C的一個焦點,且橢圓C上的點到點F的最大距離為8.
(1)求橢圓C的標準方程;
(2)已知圓O:x2+y2=1,直線l:mx+ny=1.試證明:當點P(m,n)在橢圓C上運動時,直線l與圓O恒相交,并求直線l被圓O所截得的弦長L的取值范圍.

查看答案和解析>>

科目:高中數學 來源:杭州一模 題型:解答題

已知直線x+ky-3=0所經過的定點F恰好是橢圓C的一個焦點,且橢圓C上的點到點F的最大距離為8.
(1)求橢圓C的標準方程;
(2)已知圓O:x2+y2=1,直線l:mx+ny=1.試證明:當點P(m,n)在橢圓C上運動時,直線l與圓O恒相交,并求直線l被圓O所截得的弦長L的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2013年高考數學復習卷B(五)(解析版) 題型:解答題

已知直線x+ky-3=0所經過的定點F恰好是橢圓C的一個焦點,且橢圓C上的點到點F的最大距離為8.
(1)求橢圓C的標準方程;
(2)已知圓O:x2+y2=1,直線l:mx+ny=1.試證明:當點P(m,n)在橢圓C上運動時,直線l與圓O恒相交,并求直線l被圓O所截得的弦長L的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2010年廣東省廣州市高考數學考前查漏補缺試卷(文科)(解析版) 題型:解答題

已知直線x+ky-3=0所經過的定點F恰好是橢圓C的一個焦點,且橢圓C上的點到點F的最大距離為8.
(1)求橢圓C的標準方程;
(2)已知圓O:x2+y2=1,直線l:mx+ny=1.試證明:當點P(m,n)在橢圓C上運動時,直線l與圓O恒相交,并求直線l被圓O所截得的弦長L的取值范圍.

查看答案和解析>>

同步練習冊答案