若存在正數(shù)x使
.
2x2x
mx
.
<1
成立,則實(shí)數(shù)m的取值范圍是
 
考點(diǎn):二階行列式的定義,其他不等式的解法
專題:計算題,矩陣和變換
分析:
.
2x2x
mx
.
<1
為2xx-2xm<1,從而可得m>x-2-x,從而解得.
解答: 解:
.
2x2x
mx
.
<1
可化為
2xx-2xm<1,
故x-m<2-x,
則m>x-2-x,
令f(x)=x-2-x,分析易得f(x)為增函數(shù),
而x>0,則f(x)min=-1,
故m∈(-1,+∞).
故答案為:(-1,+∞).
點(diǎn)評:本題考查了行列式的運(yùn)算及存在性問題,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
5i
2-i
的虛部為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(
1
2
)x
-2的圖象必過( 。
A、第一、三、四象限
B、第二、三、四象限
C、第一、二、三象限
D、第一、二、四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,b≠0,曲線y=x3-ax2-bx和直線 y=ax+b有交點(diǎn)Q(m,n)(m,n∈Z),則a,b滿足的等量關(guān)系式為
 
.(不能含其它參量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為得到函數(shù)y=sin2x的圖象,只需將y=cos(x+3)的圖象
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算
.
24
13
.
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)V是已知平面M上所有向量的集合,對于映射f:V→V,a∈V,記a的象為f(a).若映射f:V→V滿足:對所有a,b∈V及任意實(shí)數(shù)λ,μ都有f(λa+μb)=λf(a)+μf(b),則f稱為平面M上的線性變換.現(xiàn)有下列命題:
①設(shè)f是平面M上的線性變換,a∈V,則對任意實(shí)數(shù)k均有f(ka)=kf(a);
②對a∈V,設(shè)f(a)=2a,則f是平面M上的線性變換;
③設(shè)f是平面M上的線性變換,a,b∈V,若a,b共線,則f(a),f(b)也共線;
④若e是平面M上的單位向量,對a∈V,設(shè)f(a)=a-e,則f是平面M上的線性變換.
其中真命題是
 
(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P1(a1,b2),P2(a2,b2)…Pn(an,bn)(n為正整數(shù))都在函數(shù)y=(
1
2
)x
的圖象上,且數(shù)列{an}是a1=1,公差為1的等差數(shù)列.
(1)求數(shù)列{bn}的通項公式;
(2)對數(shù)列{an},對每個正整數(shù)k,在ak與ak+1之間插入2k-1個5(如在a1與a2之間插入20個5,a2與a3之間插入21個5,a3與a4之間插入22個5,…,依此類推),得到一個新數(shù)列{dn},設(shè)Sn是數(shù)列{dn}的前n項和,試求S1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正四棱柱ABCD-A1B1C1D1的底面邊長AB=2,若異面直線A1A與B1C所成角的大小為arctan
1
2
,求正四棱柱ABCD-A1B1C1D1的體積.

查看答案和解析>>

同步練習(xí)冊答案