已知集合A={a1,a2,a3,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個數(shù).
(Ⅰ)設(shè)集合P={2,4,6,8},Q={2,4,8,16},分別求l(P)和l(Q);
(Ⅱ)對于集合A={a1,a2,a3,…,an},猜測ai+aj(1≤i<j≤n)的值最多有多少個;
(Ⅲ)若集合A={2,4,8,…,2n},試求l(A).
【答案】分析:(Ⅰ)根據(jù)題中的有關(guān)新定義并且結(jié)合題中所給的集合即可得到l(P)和l(Q)的答案.
(II)根據(jù)組合的有關(guān)知識可得:=個,再結(jié)合題中所給的定義解釋即可得到答案.
(Ⅲ) 由題意可得:,再分情況討論當(dāng)j≠l時與當(dāng)j=l,i≠k時,均有ai+aj≠ak+al,進而得到
解答:解:(Ⅰ)因為集合P={2,4,6,8},
所以2+4=6,2+6=8,2+8=10,4+6=10,4+8=12,6+8=14,
所以可得:l(P)=5.
因為集合Q={2,4,8,16},
所以2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,
所以可得:l(Q)=6.
(Ⅱ)對于集合A={a1,a2,a3,…,an},ai+aj(1≤i<j≤n)的值最多有個.
因為在集合A的n個元素中任取一個元素,共有n種,再從余下的n-1個元素中任取一個元素,
共有n-1種.把取出的元素兩兩作和共有n(n-1)個,
因為aj+ai=ai+aj等情況,
所以對于集合A={a1,a2,a3,…,an},ai+aj(1≤i<j≤n)的值最多有個.
(Ⅲ) 因為集合A={a1,a2,a3,…,an}最多有個ai+aj(1≤i<j≤n)的值,
所以
又集合A={2,4,8,…,2n},任取ai+aj,ak+al(1≤i<j≤n,1≤k<l≤n),
當(dāng)j≠l時,不妨設(shè)j<l,則ai+aj<2aj=2j+1≤al<ak+al,即ai+aj≠ak+al
當(dāng)j=l,i≠k時,ai+aj≠ak+al
因此,當(dāng)且僅當(dāng)i=k,j=l時,ai+aj=ak+al
即所有ai+aj(1≤i<j≤n)的值兩兩不同,
所以
點評:本題主要考查集合與元素的關(guān)系,以及組合的有關(guān)知識,認(rèn)真審題,正確的理解題意并且仔細(xì)解答是解題的關(guān)鍵點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A=a1,a2,…,an中的元素都是正整數(shù),且a1<a2<…<an,對任意的x,y∈A,且x≠y,有|x-y|≥
xy
25

(Ⅰ)求證:
1
a1
-
1
an
n-1
25
;    
(Ⅱ)求證:n≤9;
(Ⅲ)對于n=9,試給出一個滿足條件的集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A=a1,a2,a3,…,an,其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個數(shù).
(Ⅰ)設(shè)集合P=2,4,6,8,Q=2,4,8,16,分別求l(P)和l(Q);
(Ⅱ)若集合A=2,4,8,…,2n,求證:l(A)=
n(n-1)2
;
(Ⅲ)l(A)是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,…,an}中的元素都是正整數(shù),且a1<a2<…<an,對任意的x,y∈A,且x≠y,都有|x-y| ≥
xy
36

(1)求證:
1
a1
-
1
an
n-1
36
;(提示:可先求證
1
ai
-
1
ai+1
1
36
(i=1,2,…,n-1),然后再完成所要證的結(jié)論.)
(2)求證:n≤11;
(3)對于n=11,試給出一個滿足條件的集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,a3,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示ai+aj(1≤i<j≤n)中所有不同值的個數(shù).
(1)設(shè)集合P={2,4,6,8},Q={2,4,8,16},分別求l(P)和l(Q)的值;
(2)若集合A={2,4,8,…,2n},求l(A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個數(shù).
(Ⅰ)若集合A={2,4,8,16},則l(A)=
 
;
(Ⅱ)當(dāng)n=108時,l(A)的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案