(本小題14分)
已知函數(shù)的圖像如圖所示,直線是其兩條對稱軸。
(1)求函數(shù)的解析式并寫出函數(shù)的單調(diào)增區(qū)間;
(2)若,且,求的值。
(1)函數(shù)的單調(diào)增區(qū)間為
(2)
(1)由題意,,∴
,故,∴,                     ……………………2分
,解得,
,∴,∴。               ……………………5分
知,
∴函數(shù)的單調(diào)增區(qū)間為。                ……………7分
(2)解法1:依題意得:,即,        ……………8分
,∴,
,       ……………………10分


。                                      ……………………14分
解法2:依題意得:,得,①  ………………9分
,∴
,     ……………………11分
-----------②
①+②得,
   ……………………14分
解法3:由,      ……………………9分
兩邊平方得,
 ∴
,               ……………………11分
,又,∴,
。                             ……………………14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知向量m=(sin,1),n=(cos,cos2),f(x)=m·n.
(1)若f(x)=1,求cos(-x)的值;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c且滿足acosC+c=b,求函數(shù)f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知A、B、C的坐標(biāo)分別是A(3,0),B(0,3),C(cos,sin).
(1)若,求角的值;
(2)若 求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)△ABC中,角A、B、C的對邊分別為a、b、c,若
(1)求證:;
(2)當(dāng)取最大值時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若角的頂點在原點,始邊與軸非負半軸重合,終邊為射線,則
的值是
A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中最小正周期是的是:(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)()的最小正周期為,則該函數(shù)的圖象
A.關(guān)于點(,0)對稱B.關(guān)于直線x=對稱
C.關(guān)于點(,0)對稱D.關(guān)于直線x=對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,則=_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

當(dāng)時,函數(shù)的最小值為_________________.

查看答案和解析>>

同步練習(xí)冊答案