已知定義域為R的奇函數(shù)f(x)的導函數(shù)為f′(x),當x≠0時,f′(x)+>0,若af,b=-2f(-2),c=ln f(ln 2),則下列關(guān)于a,bc的大小關(guān)系正確的是(  )
A.abcB.acb
C.cbaD.bac
D
f′(x)+>0,得函數(shù)F(x)=xf(x)在區(qū)間(0,+∞)上是增函數(shù),又f(x)是R上的奇函數(shù),所以F(x)在R上是偶函數(shù),所以bF(-2)=F(2)>aF>0,c=-F(ln 2)<0.故選D.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)、為常數(shù)),在時取得極值.
(1)求實數(shù)的取值范圍;
(2)當時,關(guān)于的方程有兩個不相等的實數(shù)根,求實數(shù)的取值范圍;
(3)數(shù)列滿足),,數(shù)列的前項和為,
求證:,是自然對數(shù)的底).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)求函數(shù)的極值;
(2)定義:若函數(shù)在區(qū)間上的取值范圍為,則稱區(qū)間為函數(shù)的“域同區(qū)間”.試問函數(shù)上是否存在“域同區(qū)間”?若存在,求出所有符合條件的“域同區(qū)間”;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線y=e-2x+1在點(0,2)處的切線與直線y=0和yx圍成的
三角形的面積為 (  ).
A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙二人平時跑步路程與時間的關(guān)系以及百米賽跑路程和時間的關(guān)
系分別如圖①、②所示.問:
 
(1)甲、乙二人平時跑步哪一個跑得快?
(2)甲、乙二人百米賽跑,快到終點時,誰跑得快(設Δss的增量)?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)y=x3-3x+c的圖像與x軸恰好有兩個交點,則c=            .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知定義在R上的可導函數(shù)f(x)的導函數(shù)為f′(x),滿足f′(x)<f(x),且f(x+2)為偶函數(shù),f(4)=1,則不等式f(x)<ex的解集為(  )
A.(-2,+∞)B.(0,+∞)
C.(1,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設f(x)=+xln x,g(x)=x3-x2-3.
(1)如果存在x1,x2∈[0,2]使得g(x1)-g(x2)≥M成立,求滿足上述條件的最大整數(shù)M;
(2)如果對于任意的s,t∈,都有f(s)≥g(t)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知f(x)=sin x-cos x,則f等于 (  ).
A.0B.C.D.1

查看答案和解析>>

同步練習冊答案