11.設(shè)函數(shù)f(x)=x|x-a|,若對任意x1,x2∈[3,+∞)且x1≠x2有不等式(x1-x2)[f(x1)-f(x2)]>0恒成立,則實數(shù)a取值范圍為(  )
A.(-∞,-3]B.[-3,0)C.(-∞,3]D.(0,3]

分析 由條件可得 函數(shù)f(x)=x|x-a|在[3,+∞)上是增函數(shù),再由函數(shù)f(x)=x|x-a|的增區(qū)間是(-∞,a)、(a,+∞),可得a≤3.

解答 解:∵對任意x1,x2∈[3,+∞)且x1≠x2有不等式(x1-x2)[f(x1)-f(x2)]>0恒成立
∴函數(shù)f(x)=x|x-a|在[3,+∞)上是增函數(shù).
再由函數(shù)f(x)=x|x-a|的增區(qū)間是(-∞,a)、(a,+∞),可得a≤3,
故實數(shù)a的取值范圍是(-∞,3],
故選:C

點評 本題主要考查函數(shù)的單調(diào)性的判斷和證明,函數(shù)的單調(diào)性的應用,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$24+12\sqrt{3}$B.$24+5\sqrt{3}$C.$12+15\sqrt{3}$D.$12+12\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設(shè)a=40.6,b=80.34,c=(${\frac{1}{2}}$)-0.9,則a,b,c的大小關(guān)系為(  )
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=lnx-ax(a∈R).
(1)若直線y=3x-1是函數(shù)f(x)圖象的一條切線,求實數(shù)a的值;
(2)若函數(shù)f(x)在[1,e2]上的最大值為1-ae(e為自然對數(shù)的底數(shù)),求實數(shù)a的值;
(3)若關(guān)于x的方程ln(2x2-x-3t)+x2-x-t=ln(x-t)有且僅有唯一的實數(shù)根,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知在△ABC中,$sinA+cosA=\frac{1}{5}$
(1)求$sin(\frac{3π}{2}-A)cos(\frac{π}{2}+A)$
(2)判斷△ABC是銳角三角形還是鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列說法正確的是( 。
A.正方形的直觀圖可能是平行四邊形
B.梯形的直觀圖可能是平行四邊形
C.矩形的直觀圖可能是梯形
D.互相垂直的兩條直線的直觀圖一定是互相垂直的兩條直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.如圖所示,在三棱錐PABC中,PA⊥平面ABC,D是側(cè)面PBC上的一點,過D作平面ABC的垂線DE,其中D∉PC,則DE與平面PAC的位置關(guān)系是平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.求函數(shù)y=$\frac{1}{\root{3}{{x}^{2}-3}}$+$\sqrt{5-{x}^{2}}$的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若直線ax+2y+2=0與直線x+(a-1)y+1=0互相平行,則a的值為(  )
A.-1B.2C.-1或2D.不存在

查看答案和解析>>

同步練習冊答案