【題目】已知雙曲線 的左右焦點(diǎn)分別為F1 , F2 , 過右焦點(diǎn)F2的直線交雙曲線于A,B兩點(diǎn),連接AF1 , BF1 . 若|AB|=|BF1|,且∠ABF1=90°,則雙曲線的離心率為

【答案】
【解析】解:設(shè)|BF1|=n,由|AB|=|BF1|,且∠ABF1=90°,可得 |AB|=n,|AF1|= n,
由雙曲線的定義可得|BF1|﹣|BF2|=2a,
即有|BF2|=n﹣2a,
又|AF1|﹣|AF2|=2a,可得|AF2|= n﹣2a,
由|AB|=( +1)n﹣4a=n,
解得n=2 a,
在△F1F2B中,由|BF1|2+|BF2|2=|F1F2|2 ,
即為(2 a)2+(2 ﹣2)2a2=4c2 ,
化為c2=(5﹣2 )a2 ,
可得e= = ,
所以答案是: ,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個(gè)整數(shù)中等可能隨機(jī)產(chǎn)生 (I)分別求出按程序框圖正確編程運(yùn)行時(shí)輸出y的值為i的概率pi(i=1,2,3);
(II)甲乙兩同學(xué)依據(jù)自己對程序框圖的理解,各自編程寫出程序重復(fù)運(yùn)行n次后,統(tǒng)計(jì)記錄輸出y的值為i(i=1,2,3)的頻數(shù),以下是甲乙所作頻數(shù)統(tǒng)計(jì)表的部分?jǐn)?shù)據(jù).
甲的頻數(shù)統(tǒng)計(jì)圖(部分)

運(yùn)行次數(shù)n

輸出y的值為1的頻數(shù)

輸出y的值為2的頻數(shù)

輸出y的值為3的頻數(shù)

30

14

6

10

2100

1027

376

697

乙的頻數(shù)統(tǒng)計(jì)圖(部分)

運(yùn)行次數(shù)n

輸出y的值為1的頻數(shù)

輸出y的值為2的頻數(shù)

輸出y的值為3的頻數(shù)

30

12

11

7

2100

1051

696

353

當(dāng)n=2100時(shí),根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷兩位同學(xué)中哪一位所編程序符合要求的可能系較大;
(III)將按程序擺圖正確編寫的程序運(yùn)行3次,求輸出y的值為2的次數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是求樣本x1、x2、…x10平均數(shù) 的程序框圖,圖中空白框中應(yīng)填入的內(nèi)容為(
A.S=S+xn
B.S=S+
C.S=S+n
D.S=S+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 滿足 ,且a1=3. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南宋時(shí)期的數(shù)學(xué)家秦九韶在他的著作《數(shù)書九章》中提出了計(jì)算多項(xiàng)式f(x)=anxn+an1xn1+…+a1x+a0的值的秦九韶算法,即將f(x)改寫成如下形式:f(x)=(…((anx+an1)x+an2)x+…+a1)x+a0 , 首先計(jì)算最內(nèi)層一次多項(xiàng)式的值,然后由內(nèi)向外逐層計(jì)算一次多項(xiàng)式的值,這種算法至今仍是比較先進(jìn)的算法,將秦九韶算法用程序框圖表示如圖,則在空白的執(zhí)行框內(nèi)應(yīng)填入(
A.v=vx+ai
B.v=v(x+ai
C.v=aix+v
D.v=ai(x+v)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 ,其左、右焦點(diǎn)分別為F1 , F2 , 離心率為 ,點(diǎn)R的坐標(biāo)為 ,又點(diǎn)F2在線段RF1的中垂線上.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左、右頂點(diǎn)分別為A1 , A2 , 點(diǎn)P在直線 上(點(diǎn)P不在x軸上),直線PA1 , PA2與橢圓C分別交于不同的兩點(diǎn)M,N,線段MN的中點(diǎn)為Q,若|MN|=λ|A1Q|,求λ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體中,ABCD是平行四邊形,BDEF是矩形,ED⊥面ABCD,∠ABD= ,AB=2AD.
(Ⅰ)求證:平面BDEF⊥平面ADE;
(Ⅱ)若ED=BD,求AF與平面AEC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+1|+|x﹣3|,g(x)=a﹣|x﹣2|. (Ⅰ)若關(guān)于x的不等式f(x)<g(x)有解,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若關(guān)于x的不等式f(x)<g(x)的解集為 ,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)的定義域的R,當(dāng)x<0時(shí),f(x)>1,且對任意的實(shí)數(shù)x,y∈R,等式f(x)f(y)=f(x+y)成立,若數(shù)列{an}滿足f(an+1)f( )=1(n∈N*),且a1=f(0),則下列結(jié)論成立的是(
A.f(a2013)>f(a2016
B.f(a2014)>f(a2017
C.f(a2016)<f(a2015
D.f(a2013)>f(a2015

查看答案和解析>>

同步練習(xí)冊答案