【題目】某通信公司為了配合客戶的不同需要,現(xiàn)設(shè)計(jì)A,B兩種優(yōu)惠方案,這兩種方案的應(yīng)付話費(fèi)y(元)與通話時(shí)間x(分鐘)之間的關(guān)系如圖所示(實(shí)線部分).(注:圖中MN∥CD)
(1)若通話時(shí)間為2小時(shí),則按方案A,B各付話費(fèi)多少元?
(2)方案B從500分鐘以后,每分鐘收費(fèi)多少元?
(3)通話時(shí)間在什么范圍內(nèi),方案B才會(huì)比方案A優(yōu)惠?
【答案】(1)分別為116元,168元;(2)0.3元;(3)通話時(shí)間在時(shí),方案B才會(huì)比方案A優(yōu)惠.
【解析】
根據(jù)函數(shù)圖象寫出函數(shù)解析式,(1)代入求值;(2)根據(jù)計(jì)算即可;(3)分別比較當(dāng)0≤x≤60時(shí),當(dāng)x>500時(shí),當(dāng)60<x<時(shí),當(dāng)≤x≤500時(shí),的大小即可.
由圖可知M(60,98),N(500,230),C(500,168),MN∥CD.
設(shè)這兩種方案的應(yīng)付話費(fèi)與通話時(shí)間的函數(shù)關(guān)系分別為fA(x),fB(x),
則fA(x)=,
fB(x)=.
(1)通話2小時(shí),, ,
兩種方案的話費(fèi)分別為116元,168元.
(2)因?yàn)?/span>fB(n+1)-fB(n)= (n+1)+18-n-18=0.3,(n>500),
所以方案B從500分鐘以后,每分鐘收費(fèi)0.3元.
(3)由圖可知,當(dāng)0≤x≤60時(shí),有fA(x)<fB(x).
當(dāng)x>500時(shí),fA(x)>fB(x).
當(dāng)60<x≤500時(shí),168=x+80,解得x=.
當(dāng)60<x<時(shí),fB(x)>fA(x);
當(dāng)≤x≤500時(shí),fA(x)>fB(x).
即當(dāng)通話時(shí)間在時(shí),方案B才會(huì)比方案A優(yōu)惠.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最小正周期為,將的圖象向右平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象,有下列叫個(gè)結(jié)論:
在單調(diào)遞增; 為奇函數(shù);
的圖象關(guān)于直線對(duì)稱; 在的值域?yàn)?/span>.
其中正確的結(jié)論是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時(shí),證明:;
(Ⅲ)求證:對(duì)任意正整數(shù),都有 (其中為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B,C三地有直道相通,其中AB、BC為步行道,AC為機(jī)動(dòng)車道,已知A在B的正北方向6千米處,C在B的正東方向千米處,某校開展步行活動(dòng),從A地出發(fā),經(jīng)B地到達(dá)C地,中途不休息.
(1)媒體轉(zhuǎn)播車從A出發(fā),沿AC行至點(diǎn)P處,此時(shí),求PB的距離;
(2)媒體記者隨隊(duì)步行,媒體轉(zhuǎn)播車從A地沿AC前往C,兩者同時(shí)出發(fā),步行的速度為6千米/小時(shí),為配合轉(zhuǎn)播,轉(zhuǎn)播車的速度為12千米/小時(shí),記者和轉(zhuǎn)播車通過(guò)專用對(duì)講機(jī)保持聯(lián)系,轉(zhuǎn)播車開到C地后原地等待,直到記者到達(dá)C地,若對(duì)講機(jī)的有效通話距離不超過(guò)9千米,求他們通過(guò)對(duì)講機(jī)能保持聯(lián)系的總時(shí)長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知以坐標(biāo)原點(diǎn)為圓心的圓與拋物線相交于不同的兩點(diǎn), ,與拋物線的準(zhǔn)線相交于不同的兩點(diǎn), ,且.
(1)求拋物線的方程;
(2)若不經(jīng)過(guò)坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足.證明直線過(guò)定點(diǎn),并求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了激勵(lì)業(yè)務(wù)員的積極性,對(duì)業(yè)績(jī)?cè)?/span>60萬(wàn)到200萬(wàn)的業(yè)務(wù)員進(jìn)行獎(jiǎng)勵(lì)獎(jiǎng)勵(lì)方案遵循以下原則:獎(jiǎng)金y(單位:萬(wàn)元)隨著業(yè)績(jī)值x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不低于1.5萬(wàn)元同時(shí)獎(jiǎng)金不超過(guò)業(yè)績(jī)值的5%.
(1)若某業(yè)務(wù)員的業(yè)績(jī)?yōu)?/span>100萬(wàn)核定可得4萬(wàn)元獎(jiǎng)金,若該公司用函數(shù)(k為常數(shù))作為獎(jiǎng)勵(lì)函數(shù)模型,則業(yè)績(jī)200萬(wàn)元的業(yè)務(wù)員可以得到多少獎(jiǎng)勵(lì)?(已知,)
(2)若采用函數(shù)作為獎(jiǎng)勵(lì)函數(shù)模型試確定最小的正整數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)是函數(shù)的圖象的一個(gè)對(duì)稱中心,且點(diǎn)到該圖象的對(duì)稱軸的距離的最小值為.
①的最小正周期是;
②的值域?yàn)?/span>;
③的初相為;
④在上單調(diào)遞增.
以上說(shuō)法正確的個(gè)數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列四個(gè)命題:
(1)“若,則,互為倒數(shù)”的逆命題;
(2)“面積相等的三角形全等”的否命題;
(3)“若,則有實(shí)數(shù)解”的逆否命題;
(4)“若,則”的逆否命題.
其中真命題為( )
A. (1)(2) B. (2)(3) C. (4) D. (1)(2)(3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的圖像在處的切線方程與的單調(diào)區(qū)間;
(2)設(shè)是函數(shù)的導(dǎo)函數(shù),試比較與的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com