已知函數(shù)f(x)=
1
3
x3-x2-3x在x1、x2處分別取得極大值和極小值,記點M(x1,f(x1))N(x2,f(x2)).
(1)求x1,x2的值;
(2)證明:線段MN與曲線f(x)存在異于M、N的公共點.
解法一:∵函數(shù)f(x)=
1
3
x3-x2-3x
在x1,x2(x1<x2)處取得極值,記點M(x1,f(x1)),N(x2,f(x2)),
f'(x)=x2-2x-3,
的兩個根為x1,x2,
由f'(x)=x2-2x-3=0,得x1=-1,x2=3(3分)
令f'(x)>0,x>3或x<-1,f(x)的單調(diào)增區(qū)間為(-∞,-1)和(3,+∞),f'(x)<0,-1<x<3,單調(diào)減區(qū)間為(-1,3)(5分)
所以函數(shù)f(x)在x1=-1.x2=3處取得極值.
(2)由(1)可知,M(-1,
5
3
).N(3,-9)
(7分)
所以直線MN的方程為y=-
8
3
x-1
(8分)
y=
1
3
x3-x2-3x
y=-
8
3
x-1
得x3-3x2-x+3=0,(9分)
令F(x)=x3-3x2-x+3,易得F(0)=3>0,F(xiàn)(2)=-3<0,(11分)
而F(x)的圖象在(0,2)內(nèi)是一條連續(xù)不斷的曲線,故F(x)在(0,2)內(nèi)存在零點x0,這表明線段MN與曲線f(x)有異于M,N的公共點.(12分)
解法二:同解法一,可得直線MN的方程為y=-
8
3
x-1
(8分)
y=
1
3
x3-x2-3x
y=-
8
3
x-1
得x3-3x2-x+3=0(9分)
解得x1=-1,x2=1.x3=3,
x1=-1
y1=
5
3
x2=1
y2=-
11
3
x3=3
y3=-9
(11分)
所以線段MN與曲線f(x)有異于M,N的公共點(1,-
11
3
)
.(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)f(x)=ax2+bx+c,直線l1:x=2,直線l2:y=3tx(其中-1<t<1,t為數(shù));.若直線l2與函數(shù)f(x)的圖象以及直線l1,l2與函數(shù)f(x)的圖象所圍成的封閉圖形如陰影所示.
(1)求y=f(x);
(2)求陰影面積s關(guān)于t的函數(shù)y=s(t)的解析式;(3)若過點A(1,m),m≠4可作曲線y=s(t),t∈R的三條切線,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=x2,則曲線y=f(x)在點(1,f(x))處的切線方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=(ax2+bx+c)e2-x在x=1處取得極值,且在點(2,f(2))處的切線方程為6x+y-27=0.
(1)求a,b,c的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間,并指出f(x)在x=1處的極值是極大值還是極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-2ax2+bx+c.
(Ⅰ)當(dāng)c=0時,f(x)的圖象在點(1,3)處的切線平行于直線y=x+2,求a,b的值;
(Ⅱ)當(dāng)a=
3
2
,b=-9
時,f(x)在點A,B處有極值,O為坐標(biāo)原點,若A,B,O三點共線,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)在區(qū)間(a,b)內(nèi)可導(dǎo),其導(dǎo)函數(shù)y=f'(x)的圖象如圖所示,則函數(shù)f(x)在區(qū)間(a,b)內(nèi)有( 。
A.一個極大值,一個極小值
B.一個極大值,兩個極小值
C.兩個極大值,一個極小值
D.兩個極大值,兩個極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)g(x)=(a-2)x(x>-1),函數(shù)f(x)=ln(1+x)+bx的圖象如圖所示.
(I)求b的值;
(II)求函數(shù)F(x)=f(x)-g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=
3x
+1,則
lim
△x→0
f(1-△x)-f(1)
△x
的值為( 。
A.-
1
3
B.
1
3
C.
2
3
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=elnx,g(x)=lnx-x-1,h(x)=
1
2
x2

(Ⅰ)求函數(shù)g(x)的極大值.
(Ⅱ)求證:存在x0∈(1,+∞),使g(x0)=g(
1
2
)

(Ⅲ)對于函數(shù)f(x)與h(x)定義域內(nèi)的任意實數(shù)x,若存在常數(shù)k,b,使得f(x)≤kx+b和h(x)≥kx+b都成立,則稱直線y=kx+b為函數(shù)f(x)與h(x)的分界線.試探究函數(shù)f(x)與h(x)是否存在“分界線”?若存在,請給予證明,并求出k,b的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案