分析:(1)由S
n=2a
n-2n(n∈N
*)⇒s
n-1=2a
n-1-2(n-1)(n≥2),兩式相減后整理可得
=2(n≥2),從而可證數(shù)列{a
n+2}為等比數(shù)列;
(2)由(1)知a
n+2=4×2
n-1,從而可得b
n=n+1,于是
=
,T
n=
+
+
+…+
+
,利用錯(cuò)位相減法可求得T
n,繼而可證結(jié)論.
解答:解:(1)由S
n=2a
n-2n(n∈N
*)可得s
n-1=2a
n-1-2(n-1)(n≥2),
兩式相減得:a
n=2a
n-1+2(n≥2),
∴a
n+2=2(a
n-1+2)(n≥2),
∴
=2(n≥2),
∴數(shù)列{a
n+2}為等比數(shù)列,又a
1=2a
1-2,故a
1=2,
∴數(shù)列{a
n+2}為首項(xiàng)為4,公比為2的等比數(shù)列.
(2)由(1)可知a
n+2=4×2
n-1,
∴b
n=
log2(4×2n-1)=
log22n+1=n+1,
∴
=
,
∴T
n=
+
+
+…+
+
,①
∴
T
n=
+
+…+
+
,②
∴①-②得:
T
n=
+
+
+…+
-
=
+
-
=
-
-
,
∴T
n=
-
-
<
.
點(diǎn)評(píng):本題考查數(shù)列的求和,著重考查等比關(guān)系的確定與錯(cuò)位相減法求和,考查推理與運(yùn)算能力,屬于中檔題.