已知O是△ABC所在平面內(nèi)一點(diǎn),D為BC邊中點(diǎn),且2
OA
+
OB
+
OC
=0
,那么
AO
OD
的關(guān)系是
AO
=
OD
AO
=
OD
分析:先根據(jù)所給的式子進(jìn)行變形,再由題意和向量加法的四邊形法則,得到
OB
+
OC
=2
OD
,即:
AO
=
OD
解答:解:∵2
OA
+
OB
+
OC
=
0

OB
+
OC
=-2
OA
,
∵D為BC邊中點(diǎn),
OB
+
OC
=2
OD
,則
AO
=
OD

故答案為:
AO
=
OD
點(diǎn)評(píng):本小題主要考查平行向量與共線向量、向量在幾何中的應(yīng)用、向量的加法的四邊形法則等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是△ABC所在平面內(nèi)一點(diǎn),D為BC邊中點(diǎn),且2
OA
+
OB
+
OC
=
0
,那么( 。
A、
AO
=
OD
B、
AO
=2
OD
C、
AO
=3
OD
D、2
AO
=
OD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是△ABC所在平面內(nèi)一點(diǎn),D為BC邊中點(diǎn),且4
OA
+
OB
+
OC
=
0
,那么( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是△ABC所在平面內(nèi)一點(diǎn),且滿足
BA
OA
+|
BC
|2=
AB
OB
+|
AC
|2
,則點(diǎn)O( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是△ABC所在平面內(nèi)的一定點(diǎn),動(dòng)點(diǎn)P滿足
OP
=
OA
+λ(
AB
|
AB
|
+
AC
|
AC
|
)
,λ∈(0,+∞),則動(dòng)點(diǎn)P的軌跡一定通過(guò)△ABC的( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案