已知、是橢圓的左、右焦點,且離心率,點為橢圓上的一個動點,的內(nèi)切圓面積的最大值為.
(1) 求橢圓的方程;
(2) 若是橢圓上不重合的四個點,滿足向量與共線,與共
線,且,求的取值范圍.
(1);(2)
解析試題分析:本小題主要通過對直線與圓錐曲線中橢圓的綜合應用的考查,具體涉及到橢圓方程的求法、直線與圓錐曲線的相關知識與圓錐曲線的綜合知識,提示考生對圓錐曲線的綜合題加以重視,本題主要考查考生的推理論證能力,運算求解能力、化歸與轉(zhuǎn)化以及數(shù)形結(jié)合的數(shù)學思想.(1)利用方程思想和幾何性質(zhì),得到含有的兩個等量關系,進而利用待定系數(shù)法求解橢圓方程;(2)通過直線與方程聯(lián)立,借助韋達定理和弦長公式將進行表示為含有的函數(shù)關系式,利用換元法和二次函數(shù)求值域的思路尋求范圍.
試題解析:(1)由幾何性質(zhì)可知:當內(nèi)切圓面積取最大值時,
即取最大值,且.
由得
又為定值,,
綜上得;
又由,可得,即,
經(jīng)計算得,,,
故橢圓方程為. (5分)
(2) ①當直線與中有一條直線垂直于軸時,.
②當直線斜率存在但不為0時,設的方程為:,由消去可得,代入弦長公式得: ,
同理由消去可得,
代入弦長公式得:,
所以
令,則,所以,
由①②可知,的取值范圍是. (12分)
考點:(1)橢圓方程;(2)直線與橢圓的位置關系;(3)函數(shù)的值域.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的左右焦點分別為,且經(jīng)過點,為橢圓上的動點,以為圓心,為半徑作圓.
(1)求橢圓的方程;
(2)若圓與軸有兩個交點,求點橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,,為橢圓的兩個焦點,點在橢圓上,且的周長為。
(Ⅰ)求橢圓的方程
(Ⅱ)設直線與橢圓相交于、兩點,若(為坐標原點),求證:直線與圓相切.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:的四個頂點恰好是一邊長為2,一內(nèi)角為的菱形的四個頂點.
(I)求橢圓C的方程;
(II)若直線y =kx交橢圓C于A,B兩點,在直線l:x+y-3=0上存在點P,使得 ΔPAB為等邊三角形,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線的焦點以及橢圓的上、下焦點及左、右頂點均在圓上.
(1)求拋物線和橢圓的標準方程;
(2)過點的直線交拋物線于兩不同點,交軸于點,已知,求的值;
(3)直線交橢圓于兩不同點,在軸的射影分別為,,若點滿足,證明:點在橢圓上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知焦點在軸上的橢圓和雙曲線的離心率互為倒數(shù),它們在第一象限交點的坐標為,設直線(其中為整數(shù)).
(1)試求橢圓和雙曲線的標準方程;
(2)若直線與橢圓交于不同兩點,與雙曲線交于不同兩點,問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知定點,,動點到定點距離與到定點的距離的比值是.
(Ⅰ)求動點的軌跡方程,并說明方程表示的曲線;
(Ⅱ)當時,記動點的軌跡為曲線.
①若是圓上任意一點,過作曲線的切線,切點是,求的取值范圍;
②已知,是曲線上不同的兩點,對于定點,有.試問無論,兩點的位置怎樣,直線能恒和一個定圓相切嗎?若能,求出這個定圓的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,橢圓的離心率為,是其左右頂點,是橢圓上位于軸兩側(cè)的點(點在軸上方),且四邊形面積的最大值為4.
(1)求橢圓方程;
(2)設直線的斜率分別為,若,設△與△的面積分別為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
直線與橢圓相交于,兩點,為坐標原點.
(Ⅰ)當點的坐標為,且四邊形為菱形時,求的長;
(Ⅱ)當點在上且不是的頂點時,證明:四邊形不可能為菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com