A. | 101 | B. | 122 | C. | 145 | D. | 170 |
分析 an+1=(${\sqrt{{a_n}-1}$+1)2+1>0,可得$(\sqrt{{a}_{n+1}-1})^{2}$=(${\sqrt{{a_n}-1}$+1)2,$\sqrt{{a}_{n+1}-1}$-$\sqrt{{a}_{n}-1}$=1,利用等差數(shù)列的通項公式即可得出.
解答 解:∵an+1=(${\sqrt{{a_n}-1}$+1)2+1>0,
則$(\sqrt{{a}_{n+1}-1})^{2}$=(${\sqrt{{a_n}-1}$+1)2,
∴$\sqrt{{a}_{n+1}-1}$-$\sqrt{{a}_{n}-1}$=1,
∴數(shù)列$\{\sqrt{{a}_{n}-1}\}$是等差數(shù)列,公差為1.
∴$\sqrt{{a}_{n}-1}$=1=(n-1)=n,可得an=n2+1,
∴a12=122+1=145.
故選:C.
點評 本題考查了數(shù)列遞推關(guān)系、等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$或$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{3}$或$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,2) | B. | (-2,-1] | C. | (-2,-1) | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | 9 | C. | 2 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 點P到平面QEF的距離 | B. | 直線PQ與平面PEF所成的角 | ||
C. | 三棱錐P-QEF的體積 | D. | △QEF的面積 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com