如圖,P是橢圓上的一點,F是橢圓的左焦點,且=(+),||=4,則點P到該橢圓左準線的距離為

A.6                B.4                    C.3                    D.

D?

解析:∵=(+),∴QPF的中點.?

又∵||=4,∴P到右焦點的距離為8.?

∴|PF|=2a-8=2,E==.∴到左準線的距離d==.∴選D.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知以原點O為中心的橢圓的一條準線方程為y=
4
3
3
,離心率e=
3
2
,M是橢圓上的動點
(Ⅰ)若C,D的坐標分別是(0,-
3
),(0,
3
)
,求|MC|•|MD|的最大值;
(Ⅱ)如題(20)圖,點A的坐標為(1,0),B是圓x2+y2=1上的點,N是點M在x軸上的射影,點Q滿足條件:
OQ
=
OM
+
ON
,
QA
BA
=0
、求線段QB的中點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,橢圓的中心為原點0,離心率e=
2
2
,一條準線的方程是x=2
2

(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)動點P滿足:
OP
=
OM
+2
ON
,其中M、N是橢圓上的點,直線OM與ON的斜率之積為-
1
2

問:是否存在定點F,使得|PF|與點P到直線l:x=2
10
的距離之比為定值;若存在,求F的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,F(xiàn)1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的焦點,P為橢圓上的點,PF1⊥OX軸,且OP和橢圓的一條長軸頂點A和短軸頂點B的連線AB平行.
(1)求橢圓的離心率e
(2)若Q是橢圓上任意一點,證明∠F1QF2
π
2

(3)過F1與OP垂直的直線交橢圓于M,N,若△M F2N的面積為20
3
,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

如圖,P是雙曲線數(shù)學公式上的動點,F(xiàn)1、F2是雙曲線的焦點,M是∠F1PF2的平分線上的一點,且數(shù)學公式.有一同學用以下方法研究|OM|:延長F2M交PF1于點N,可知△PNF2為等腰三角形,且M為F2N的中點,得數(shù)學公式.類似地:P是橢圓數(shù)學公式上的動點,F(xiàn)1、F2是橢圓的焦點,M是∠F1PF2的平分線上的一點,且數(shù)學公式.則|OM|的取值范圍是


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式

查看答案和解析>>

科目:高中數(shù)學 來源:2012年湖北省黃岡中學高三適應性考試數(shù)學試卷(理科)(解析版) 題型:選擇題

如圖,P是雙曲線上的動點,F(xiàn)1、F2是雙曲線的焦點,M是∠F1PF2的平分線上的一點,且.有一同學用以下方法研究|OM|:延長F2M交PF1于點N,可知△PNF2為等腰三角形,且M為F2N的中點,得.類似地:P是橢圓上的動點,F(xiàn)1、F2是橢圓的焦點,M是∠F1PF2的平分線上的一點,且.則|OM|的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案