已知雙曲線的右焦點與拋物線的焦點重合,則該雙曲線的焦點到其漸近線的距離等于           .

試題分析:因為拋物線的焦點為(3,0),所以,因為雙曲線的焦點到其漸近線的距離等于虛半軸長,所以應(yīng)填.
點評:由拋物線的標(biāo)準(zhǔn)方程,可求出雙曲線方程b的值,再根據(jù)雙曲線的焦點到漸近線的距離等于虛半軸長b,問題得解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)雙曲線的焦點為,則該雙曲線的漸近線方程是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若雙曲線上一點到左焦點的距離為4,則點到右焦點的距離是       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的虛軸長是實軸長的2倍,則等于
A.B.C.4D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知拋物線的準(zhǔn)線經(jīng)過雙曲線的左焦點,若拋物線與雙曲線的一個交點是
(1)求拋物線的方程; (2)求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)雙曲線的右頂點為為雙曲線上的一個動點(不是頂點),從點引雙曲線的兩條漸近線的平行線,與直線分別交于兩點,其中為坐標(biāo)原點,則的大小關(guān)系為(  )
A.B.
C.D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知焦點在軸上的雙曲線的兩條漸近線過坐標(biāo)原點,且兩條漸近線
與以點 為圓心,1為半徑的圓相切,又知的一個焦點與關(guān)于直線
對稱.
(1)求雙曲線的方程;
(2)設(shè)直線與雙曲線的左支交于,兩點,另一直線經(jīng)過  的中點,求直線軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知、為雙曲線的左、右焦點,點上,,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為=,橢圓上的點到兩焦點的距離之和為12,點A、B分別是橢圓長軸的左、右端點,點F是橢圓的右焦點.點在橢圓上,且位于軸的上方,
(I) 求橢圓的方程;
(II)求點的坐標(biāo);
(III)  設(shè)是橢圓長軸AB上的一點,到直線AP的距離等于,求橢圓上的點到點的距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案