【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為4,過(guò)點(diǎn)且斜率為的直線交橢圓于兩點(diǎn),且點(diǎn)為線段的中點(diǎn)

1)求橢圓的方程;

2)設(shè)點(diǎn)為坐標(biāo)原點(diǎn),過(guò)右焦點(diǎn)的直線交橢圓于兩點(diǎn),(不在軸上),求面積的最大值.

【答案】(1) (2)

【解析】

1)由已知條件推導(dǎo)出,設(shè),由此能求出橢圓C的方程.

2)設(shè),由題意設(shè)直線AB的方程為,,得關(guān)于的一元二次方程,由此韋達(dá)定理、點(diǎn)到直線距離公式等結(jié)合已知條件能求出面積的最大值.

解:由題知,長(zhǎng)軸長(zhǎng)為4,,

過(guò)點(diǎn)且斜率為的直線交橢圓于,

設(shè),,,

,.

③得,

,

,

,

由①④解得,,故橢圓C的標(biāo)準(zhǔn)方程為

2)由(1)知,,所以右焦點(diǎn)

又因?yàn)檫^(guò)右焦點(diǎn)的直線交橢圓于兩點(diǎn),不在軸上),

設(shè),由題意:

①當(dāng)斜率不存時(shí),設(shè)的方程為

,

②當(dāng)斜率存時(shí),設(shè)的方程為,

由題意:

,消去并整理,,

由韋達(dá)定理,得

點(diǎn)到直線的距離為,

設(shè),

,,又因?yàn)?/span>,

當(dāng)時(shí),,函數(shù)單調(diào)遞減,

當(dāng)時(shí),,函數(shù)單調(diào)遞增,

所以沒(méi)有極值.

所以當(dāng)斜率不存時(shí)有極大值為.

綜上所述,面積的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別為,,點(diǎn)為橢圓上任意一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為點(diǎn),有,且當(dāng)的面積最大時(shí)為等邊三角形.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)與圓相切的直線交橢圓兩點(diǎn),若橢圓上存在點(diǎn)滿(mǎn)足,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)粒子從原點(diǎn)出發(fā),在第一象限和兩坐標(biāo)軸正半軸上運(yùn)動(dòng),在第一秒時(shí)它從原點(diǎn)運(yùn)動(dòng)到點(diǎn),接著它按圖所示在軸、軸的垂直方向上來(lái)回運(yùn)動(dòng),且每秒移動(dòng)一個(gè)單位長(zhǎng)度,那么,在2018秒時(shí),這個(gè)粒子所處的位置在點(diǎn)______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系下,方程的圖形為如圖所示的“幸運(yùn)四葉草”,又稱(chēng)為玫瑰線.

(1)當(dāng)玫瑰線的時(shí),求以極點(diǎn)為圓心的單位圓與玫瑰線的交點(diǎn)的極坐標(biāo);

(2)求曲線上的點(diǎn)M與玫瑰線上的點(diǎn)N距離的最小值及取得最小值時(shí)的點(diǎn)MN的極坐標(biāo)(不必寫(xiě)詳細(xì)解題過(guò)程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其圖象與軸交于,兩點(diǎn),且.

1)求的取值范圍;

2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中,,分別為的中點(diǎn).

(1)證明:平面;

(2)已知與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若存在兩個(gè)極值點(diǎn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已定義,已知函數(shù)的定義域都是,則下列四個(gè)命題中為真命題的是_________.(寫(xiě)出所有真命題的序號(hào))

都是奇函數(shù),則函數(shù)為奇函數(shù).

都是偶函數(shù),則函數(shù)為偶函數(shù).

都是增函數(shù),則函數(shù)為增函數(shù).

都是減函數(shù),則函數(shù)為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)滿(mǎn)足約束條件的最小值為7,則_________.

查看答案和解析>>

同步練習(xí)冊(cè)答案