【題目】如圖,在四棱錐中, 是等邊三角形, .

(1)求證:平面平面;

(2)若直線所成角的大小為60°,求二面角的大小.

【答案】(1)見解析(2)90°

【解析】【試題分析】(1)由于是等邊三角形,結(jié)合勾股定理,可計(jì)算證明三條直線兩兩垂直,由此證得平面,進(jìn)而得到平面平面.(2)根據(jù)(1)證明三條直線兩兩垂直,以為空間坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,利用所成角為計(jì)算出點(diǎn)的坐標(biāo),然后通過平面和平面的法向量計(jì)算二面角的余弦值并求得大小.

【試題解析】

(1)∵,

是等邊三角形

, , 均為直角三角形,即, ,

平面

平面

∴平面平面

(2)以為單位正交基底,建立如圖所示的空間直角坐標(biāo)系

, ,

,

設(shè),則

∵直線所成角大小為60°,所以

,

,解得(舍),

設(shè)平面的一個(gè)法向量為

, ,則

,則,所以

∵平面的一個(gè)法向量為,

, ,則

,則 ,

故二面角的大小為90°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若函數(shù)的定義域?yàn)?/span>,且存在非零常數(shù),對(duì)任意 , 恒成立,則稱為線周期函數(shù), 的線周期.

(1)下列函數(shù)①,②,③(其中表示不超過x的最大整數(shù)),是線周期函數(shù)的是 (直接填寫序號(hào));

(2)若為線周期函數(shù),其線周期為,求證: 為周期函數(shù);

(3)若為線周期函數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C經(jīng)過點(diǎn),兩點(diǎn),且圓心C在直線.

1)求圓C的方程;

2)設(shè),對(duì)圓C上任意一點(diǎn)P,在直線MC上是否存在與點(diǎn)M不重合的點(diǎn)N,使是常數(shù),若存在,求出點(diǎn)N坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的方程為,動(dòng)圓過點(diǎn)和點(diǎn).記兩個(gè)圓的交點(diǎn)為、

1)如果直線的方程為,求圓的方程;

2)當(dāng)動(dòng)圓的面積最小時(shí),求兩個(gè)圓心距離的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),若在曲線上存在點(diǎn)使得,則實(shí)數(shù)的取值范圍為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中,角所對(duì)的邊分別為,滿足

1)求的大;

2)如圖,,在直線的右側(cè)取點(diǎn),使得.當(dāng)角為何值時(shí),四邊形面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】半期考試后,班長(zhǎng)小王統(tǒng)計(jì)了50名同學(xué)的數(shù)學(xué)成績(jī),繪制頻率分布直方圖如圖所示.

(1)根據(jù)頻率分布直方圖,估計(jì)這50名同學(xué)的數(shù)學(xué)成績(jī)的眾數(shù);

(2)用分層抽樣的方法從成績(jī)低于115的同學(xué)中抽取6名,再在抽取的這6名同學(xué)中任選2名,求這兩名同學(xué)數(shù)學(xué)成績(jī)均在中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大學(xué)生小王和小張即將參加實(shí)習(xí),他們各從“崇尚科學(xué),關(guān)心社會(huì)”的荊州市荊州中學(xué)、“安學(xué)、親師、樂友、信道”的荊門市龍泉中學(xué)、“崇尚科學(xué),追求真理”的荊門市鐘祥一中、“追求卓越,崇尚一流”的襄陽(yáng)市第四中學(xué)、“文明、振奮、務(wù)實(shí)、創(chuàng)新”的襄陽(yáng)市第五中學(xué)、“千年文脈,百年一中”的宜昌市第一中學(xué)、“人走三峽,書讀夷陵”的宜昌市夷陵中學(xué)這七所省重點(diǎn)中學(xué)中隨機(jī)選擇一所參加實(shí)習(xí),兩人可選同一所或者兩所不同的學(xué)校,假設(shè)他們選擇哪所學(xué)校是等可能的,則他們?cè)谕粋(gè)市參加實(shí)習(xí)的概率為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且.

1)求實(shí)數(shù)的值,并指出函數(shù)的定義域;

2)將函數(shù)圖象上的所有點(diǎn)向右平行移動(dòng)1個(gè)單位得到函數(shù)的圖象,寫出函數(shù)的表達(dá)式;

3)對(duì)于(2)中的,關(guān)于的函數(shù)上的最小值為2,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案