已知向量為非零向量,且
(1)求證:
(2) 若,求與的夾角。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),給定兩點(diǎn)A(1,0),B(0,一2),點(diǎn)C滿足,其中,且.
(1)求點(diǎn)C的軌跡方程;
(2)設(shè)點(diǎn)C的軌跡與橢圓交于兩點(diǎn)M,N,且以MN為直徑的圓過原點(diǎn),求證:為定值;
(3)在(2)的條件下,若橢圓的離心率不大于,求橢圓長軸長的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知=,= ,=,設(shè)是直線上一點(diǎn),是坐標(biāo)原點(diǎn)
(1)求使取最小值時的;
(2)對(1)中的點(diǎn),求的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題13分)
向量=(+1,),=(1,4cos(x+)),設(shè)函數(shù)= (∈R,且為常數(shù)).
(1)若為任意實(shí)數(shù),求的最小正周期;
(2)若在[0,)上的最大值與最小值之和為7,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com