精英家教網 > 高中數學 > 題目詳情

【題目】針對“中學生追星問題”,某校團委對“學生性別和中學生追星是否有關”作了一次調查,其中女生人數是男生人數的,男生追星的人數占男生人數的,女生追星的人數占女生人數的.若有的把握認為是否追星和性別有關,則男生至少有( )

參考數據及公式如下:

A. 12B. 11C. 10D. 18

【答案】A

【解析】

設男生人數為,依題意可得列聯表;根據表格中的數據,代入求觀測值的公式,求出觀測值同臨界值進行比較,列不等式即可得出結論.

設男生人數為,依題意可得列聯表如下:

喜歡追星

不喜歡追星

總計

男生

女生

總計

若在犯錯誤的概率不超過的前提下認為是否喜歡追星和性別有關,

,

,解得,

為整數,

若在犯錯誤的概率不超過的前提下認為是否喜歡追星和性別有關,

則男生至少有人,故選A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】我國古代數學家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.該原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖,在空間直角坐標系中的平面內,若函數的圖象與軸圍成一個封閉的區(qū)域,將區(qū)域沿軸的正方向平移8個單位長度,得到幾何體如圖一,現有一個與之等高的圓柱如圖二,其底面積與區(qū)域的面積相等,則此圓柱的體積為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,矩形ABCD中,,,F分別在線段BCAD上,,將矩形ABEF沿EF折起記折起后的矩形為MNEF,且平面平面ECDF

求證:平面MFD;

,求證:

求四面體NFEC體積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知橢圓,分別為其左、右焦點,過的直線與此橢圓相交于兩點,且的周長為8,橢圓的離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)在平面直角坐標系中,已知點與點,過的動直線(不與軸平行)與橢圓相交于兩點,點是點關于軸的對稱點.求證:

i三點共線.

ii

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動圓經過定點,且與直線相切,設動圓圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設過點的直線分別與曲線交于,兩點,直線,的斜率存在,且傾斜角互補,證明:直線的斜率為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知斜率為1的直線與橢圓交于兩點,且線段的中點為,橢圓的上頂點為.

(1)求橢圓的離心率;

(2)設直線與橢圓交于兩點,若直線的斜率之和為2,證明:過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,三棱錐放置在以為直徑的半圓面上,為圓心,為圓弧上的一點,為線段上的一點,且,.

(Ⅰ)求證:平面平面

(Ⅱ)當二面角的平面角為時,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四面體中,分別是線段的中點,,,直線與平面所成的角等于

(Ⅰ)證明:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某城市為鼓勵人們綠色出行,乘坐地鐵,地鐵公司決定按照乘客經過地鐵站的數量實施分段優(yōu)惠政策,不超過站的地鐵票價如下表:現有甲、乙兩位乘客同時從起點乘坐同一輛地鐵,已知他們乘坐地鐵都不超過站,且他們各自在每個站下車的可能性是相同的.

(1)若甲、乙兩人共付費元,則甲、乙下車方案共有多少種?

(2)若甲、乙兩人共付費元,求甲比乙先到達目的地的概率.

查看答案和解析>>

同步練習冊答案