【題目】等比數(shù)列{an}共有奇數(shù)項,所有奇數(shù)項和S奇=255,所有偶數(shù)項和S偶=﹣126,末項是192,則首項a1=( )
A.1
B.2
C.3
D.4
【答案】C
【解析】解:設(shè)等比數(shù)列有2n+1項,則奇數(shù)項有n+1項,偶數(shù)項有n項,設(shè)公比為q, 得到奇數(shù)項為奇數(shù)項為a1(1+q2+q4+…+q2n)=255,偶數(shù)項為a1(q+q3+q5+…+q2n﹣1)=﹣126,
所以qa1(1+q2+q4+…+q2n)=255q,即a1(q+q3+q5+…+q2n﹣1)+qa2n+1=255q,
可得:﹣126+192q=255q,解得q=﹣2.
所以所有奇數(shù)項和S奇=255,末項是192, = =255,即:
解得n=3.是共有7項,a7=a1(﹣ )6 , 解得a1=3.
故選:C.
【考點精析】解答此題的關(guān)鍵在于理解等比數(shù)列的基本性質(zhì)的相關(guān)知識,掌握{(diào)an}為等比數(shù)列,則下標(biāo)成等差數(shù)列的對應(yīng)項成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項不為零的常數(shù)列.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=e(a﹣1)x+4x(x∈R)有大于零的極值點,則實數(shù)a范圍是( )
A.a>﹣3
B.a<﹣3
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),f(2)=0, <0(x>0),則不等式xf(x)<0的解集 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,g(x)=x2﹣2bx+4,若對任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),則實數(shù)b的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,定義在[﹣2,2]的偶函數(shù)f(x)的圖象如圖所示,則方程f(f(x))=0的實根個數(shù)為( )
A.3
B.4
C.5
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD所在平面與三角形CDE所在的平面相交于CD,AE⊥平面CDE,且AE=1.
(1)求證:AB∥平面CDE;
(2)求證:DE⊥平面ABE;
(3)求點A到平面BDE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:實數(shù)x滿足x2﹣4ax+3a2<0,其中a>0;命題q:實數(shù)x滿足x2﹣5x+6≤0
(1)若a=1,且q∧p為真,求實數(shù)x的取值范圍;
(2)若p是q必要不充分條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列{an}中,a1=1,又a1 , a2 , a5成公比不為1的等比數(shù)列. (Ⅰ)求數(shù)列{an}的公差;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程 =1表示焦點在x軸上的雙曲線. (Ⅰ)命題q為真命題,求實數(shù)k的取值范圍;
(Ⅱ)若命題“p∨q”為真,命題“p∧q”為假,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com