(2008•奉賢區(qū)二模)函數(shù)f(x)=x(1-x),x∈(0,1)的最大值為
1
4
1
4
分析:由題意可得:函數(shù)的對(duì)稱軸為x=
1
2
,再集合二次函數(shù)的性質(zhì)可得答案.
解答:解:因?yàn)楹瘮?shù)f(x)=x(1-x),x∈(0,1),
所以函數(shù)的對(duì)稱軸為x=
1
2
,
所以根據(jù)二次函數(shù)的性質(zhì)可得:當(dāng)x=
1
2
時(shí),函數(shù)有最大值
1
4

故答案為
1
4
點(diǎn)評(píng):解決此類問(wèn)題的關(guān)鍵是數(shù)列掌握二次函數(shù)的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•奉賢區(qū)二模)函數(shù)f(x)=cos2x的最小正周期為
π
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•奉賢區(qū)二模)已知數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=2n-1,則a7=
64
64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•奉賢區(qū)二模)函數(shù)f(x)=
x2+x-2
的定義域?yàn)?!--BA-->
(-∞,-2]∪[1,+∞)
(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•奉賢區(qū)二模)已知橢圓的標(biāo)準(zhǔn)方程為
x2
4
+
y2
3
=1
,則該橢圓的焦距為
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案