如圖,在三棱柱中,底面,,,分別是棱的中點(diǎn),為棱上的一點(diǎn),且//平面.
(1)求的值;
(2)求證:;
(3)求二面角的余弦值.

(1);(2)詳見(jiàn)解析;(3)二面角的余弦值為.

解析試題分析:(1)求的值,關(guān)鍵是找的位置,注意到平面,有線面平行的性質(zhì),可得,由已知中點(diǎn),由平面幾何知識(shí)可得中點(diǎn),從而可得的值;(2)求證:,有圖觀察,用傳統(tǒng)方法比較麻煩,而本題由于底面,所以,又,這樣建立空間坐標(biāo)比較簡(jiǎn)單,故以為原點(diǎn),以分別為軸,建立空間直角坐標(biāo)系,取,可寫出個(gè)點(diǎn)坐標(biāo),從而得向量的坐標(biāo),證即可;(3)求二面角的余弦值,由題意可得向量是平面的一個(gè)法向量,只需求出平面的一個(gè)法向量,可設(shè)平面的法向量,利用,即可求出平面的一個(gè)法向量,利用向量的夾角公式即可求出二面角的余弦值.
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8c/7/kdsul2.png" style="vertical-align:middle;" />平面
平面,平面平面,
所以.                          3分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c8/4/owcuk1.png" style="vertical-align:middle;" />為中點(diǎn),且側(cè)面為平行四邊形
所以中點(diǎn),所以.                4分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a6/b/mzear.png" style="vertical-align:middle;" />底面
所以,,                                      5分
,
如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè),則由可得                  6分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a1/a/1e5wp4.png" style="vertical-align:middle;" />分別是的中點(diǎn),
所以.                                      7分
.                &

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在棱長(zhǎng)為2的正方體中,分別是棱的中點(diǎn),點(diǎn)分別在棱,上移動(dòng),且.
當(dāng)時(shí),證明:直線平面;
是否存在,使平面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,底面是直角梯形,,
平面平面,若,,,且

(1)求證:平面; 
(2)設(shè)平面與平面所成二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖長(zhǎng)方體中,底面ABCD是邊長(zhǎng)為1的正方形,E為延長(zhǎng)線上的一點(diǎn)且滿足.
(1)求證:平面
(2)當(dāng)為何值時(shí),二面角的大小為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(2013•湖北)如圖,AB是圓O的直徑,點(diǎn)C是圓O上異于A,B的點(diǎn),直線PC⊥平面ABC,E,F(xiàn)分別是PA,PC的中點(diǎn).
(1)記平面BEF與平面ABC的交線為l,試判斷直線l與平面PAC的位置關(guān)系,并加以證明;
(2)設(shè)(1)中的直線l與圓O的另一個(gè)交點(diǎn)為D,且點(diǎn)Q滿足.記直線PQ與平面ABC所成的角為θ,異面直線PQ與EF所成的角為α,二面角E﹣l﹣C的大小為β.求證:sinθ=sinαsinβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在底面邊長(zhǎng)為1,側(cè)棱長(zhǎng)為2的正四棱柱中,P是側(cè)棱上的一點(diǎn),.
(1)試確定m,使直線AP與平面BDD1B1所成角為60º;
(2)在線段上是否存在一個(gè)定點(diǎn),使得對(duì)任意的m,
⊥AP,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,等腰梯形ABCD,AD//BC,P是平面ABCD外一點(diǎn),P在平面ABCD的射影O恰在AD上,.

(1)證明:;
(2)求二面角A-BP-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如右圖,在棱長(zhǎng)為a的正方體ABCDA1B1C1D1中,G為△BC1D的重心,

(1)試證:A1、G、C三點(diǎn)共線;
(2)試證:A1C⊥平面BC1D;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

在空間直角坐標(biāo)系中,設(shè)點(diǎn)是點(diǎn)關(guān)于坐標(biāo)平面的對(duì)稱點(diǎn),則線段
長(zhǎng)度等于 ▲ ;

查看答案和解析>>

同步練習(xí)冊(cè)答案