【題目】上饒市在某次高三適應(yīng)性考試中對數(shù)學(xué)成績數(shù)據(jù)統(tǒng)計(jì)顯示,全市10000名學(xué)生的成績近似服從正態(tài)分布,現(xiàn)某校隨機(jī)抽取了50名學(xué)生的數(shù)學(xué)成績分析,結(jié)果這50名學(xué)生的成績?nèi)拷橛?/span>85分到145分之間,現(xiàn)將結(jié)果按如下方式分為6組,第一組,第二組,第六組,得到如圖所示的頻率分布直方圖:

1)試由樣本頻率分布直方圖估計(jì)該校數(shù)學(xué)成績的平均分?jǐn)?shù);

2)若從這50名學(xué)生中成績在125分(含125分)以上的同學(xué)中任意抽取3人,該3人在全市前13名的人數(shù)記為,求的概率.

附:若,則,.

【答案】1112;(2.

【解析】

1)由頻率之和為1,可求出的頻率,進(jìn)而由頻率分布直方圖求出平均數(shù)即可;

2)結(jié)合正態(tài)分布,可求得全市前13名的最低分?jǐn)?shù),從而可知這50名學(xué)生中成績在125分(含125分)以上的人數(shù),及在全市前13名的人數(shù),進(jìn)而求出的概率即可.

1)由頻率分布直方圖可知的頻率為

∴估計(jì)該校全體學(xué)生的數(shù)學(xué)平均成績?yōu)椋?/span>

;

2)由于,根據(jù)正態(tài)分布:

,即

∴前13名的成績?nèi)吭?/span>135分以上.

根據(jù)頻率分布直方圖可知這50人中成績在135以上(包括135分)的有人,而在的學(xué)生有人.

的取值為01,2,3

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,其中,是函數(shù)定義城內(nèi)任意不相等的兩個實(shí)數(shù).

1)若,同時,求證:

2)判斷是否在集合A中,并說明理由;

3)設(shè)函數(shù)的定義域?yàn)?/span>B,函數(shù)的值域?yàn)?/span>C.函數(shù)滿足以下3個條件:

,②,③.試確定一個滿足以上3個條件的函數(shù)要對滿足的條件進(jìn)行說明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.

(1)求的解析式;

(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形的面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,是等邊三角形,D.E分別是BC.AC上兩點(diǎn),且,AD交于點(diǎn)H,鏈接CH.

1)當(dāng)時,求的值;

2)如圖2,當(dāng)時,__________; __________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某造船公司年造船量是20艘,已知造船艘的產(chǎn)值函數(shù)為 (單位:萬元),成本函數(shù)為(單位:萬元),又在經(jīng)濟(jì)學(xué)中,函數(shù)的邊際函數(shù)定義為.

(1)求利潤函數(shù)及邊際利潤函數(shù).(提示:利潤=產(chǎn)值-成本)

(2)問年造船量安排多少艘時,可使公司造船的年利潤最大?

(3)求邊際利潤函數(shù)的單調(diào)遞減區(qū)間,并說明單調(diào)遞減在本題中的實(shí)際意義是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為2的正方形所在的平面與半圓弧所在平面垂直,上異于的點(diǎn).

(1)證明:平面平面;

(2)當(dāng)三棱錐體積最大時,求面與面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知自然數(shù)20個正整數(shù)因子(包括1和本身),它們從小到大依次記作,,,…,,且序號為的因數(shù)為.求自然數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的最小正周期為,且其圖象關(guān)于直線對稱,則在下面結(jié)論中正確的個數(shù)是(

①圖象關(guān)于點(diǎn)對稱;

②圖象關(guān)于點(diǎn)對稱;

③在上是增函數(shù);

④在上是增函數(shù);

⑤由可得必是的整數(shù)倍.

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了增強(qiáng)學(xué)生的記憶力和辨識力,組織了一場類似《最強(qiáng)大腦》的PK賽,兩隊(duì)各由4名選手組成,每局兩隊(duì)各派一名選手PK,比賽四局.除第三局勝者得2分外,其余各局勝者均得1分,每局的負(fù)者得0.假設(shè)每局比賽A隊(duì)選手獲勝的概率均為,且各局比賽結(jié)果相互獨(dú)立,比賽結(jié)束時A隊(duì)的得分高于B隊(duì)的得分的概率為( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案