【題目】甲、乙兩位同學(xué)參加某個(gè)知識(shí)答題游戲節(jié)目,答題分兩輪,第一輪為“選題答題環(huán)節(jié)”第二輪為“輪流坐莊答題環(huán)節(jié)”.首先進(jìn)行第一輪“選題答題環(huán)節(jié)”,答題規(guī)則是:每位同學(xué)各自從備選的5道不同題中隨機(jī)抽出3道題進(jìn)行答題,答對(duì)一題加10分,答錯(cuò)一題(不答視為答錯(cuò))減5分,已知甲能答對(duì)備選5道題中的每道題的概率都是,乙恰能答對(duì)備選5道題中的其中3道題;第一輪答題完畢后進(jìn)行第二輪“輪流坐莊答題環(huán)節(jié)”,答題規(guī)則是:先確定一人坐莊答題,若答對(duì),繼續(xù)答下一題…,直到答錯(cuò),則換人(換莊)答下一題…以此類(lèi)推.例如若甲首先坐莊,則他答第1題,若答對(duì)繼續(xù)答第2題,如果第2題也答對(duì),繼續(xù)答第3題,直到他答錯(cuò)則換成乙坐莊開(kāi)始答下一題,…直到乙答錯(cuò)再換成甲坐莊答題,依次類(lèi)推兩人共計(jì)答完20道題游戲結(jié)束,假設(shè)由第一輪答題得分期望高的同學(xué)在第二輪環(huán)節(jié)中最先開(kāi)始作答,且記第道題也由該同學(xué)(最先答題的同學(xué))作答的概率為(),其中,已知供甲乙回答的20道題中,甲,乙兩人答對(duì)其中每道題的概率都是,如果某位同學(xué)有機(jī)會(huì)答第道題且回答正確則該同學(xué)加10分,答錯(cuò)(不答視為答錯(cuò))則減5分,甲乙答題相互獨(dú)立;兩輪答題完畢總得分高者勝出.回答下列問(wèn)題
(1)請(qǐng)預(yù)測(cè)第二輪最先開(kāi)始作答的是誰(shuí)?并說(shuō)明理由
(2)①求第二輪答題中,;
②求證為等比數(shù)列,并求()的表達(dá)式.
【答案】(1)第二輪最先開(kāi)始答題的是甲;詳見(jiàn)解析(2)①,②證明見(jiàn)解析;()
【解析】
(1)設(shè)甲選出的3道題答對(duì)的道數(shù)為,則,設(shè)甲第一輪答題的總得分為,則,,設(shè)乙第一輪得分為,求出的分布列,得到,比較兩者大小即可得出結(jié)論;
(2)①依題意得,,再利用相互獨(dú)立事件概率乘法公式和互斥事件概率加法公式求出;②,從而,,由此能證明是等比數(shù)列,并求出的表達(dá)式.
(1)設(shè)甲選出的3道題答對(duì)的道數(shù)為,則,
設(shè)甲第一輪答題的總得分為,則,
所以;
(或法二:設(shè)甲的第一輪答題的總得分為,則的所有可能取值為30,15,0,-15,
且,
,
,
,
故得分為的分布列為:
30 | 15 | 0 | -15 | |
;)
設(shè)乙的第一輪得分為,則的所有可能取值為30,15,0,
則,,,
故的分布列為:
30 | 15 | 0 | |
故,
∵,所以第二輪最先開(kāi)始答題的是甲.
(2)①依題意知,,,
②依題意有(),
∴,(),
又,
所以是以為首項(xiàng),為公比的等比數(shù)列,
∴,
∴().
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,函數(shù)在點(diǎn)處的切線(xiàn)與函數(shù)相切.
(1)求函數(shù)的值域;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓和圓,、為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,當(dāng)直線(xiàn)與圓相切時(shí),.
(I)求的方程;
(Ⅱ)直線(xiàn)與橢圓和圓都相切,切點(diǎn)分別為、,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.
(1)當(dāng)時(shí),判斷直線(xiàn)與曲線(xiàn)的位置關(guān)系;
(2)若直線(xiàn)與曲線(xiàn)相交所得的弦長(zhǎng)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)是定義在上的奇函數(shù),且函數(shù)為偶函數(shù),當(dāng)時(shí),,若有三個(gè)零點(diǎn),則實(shí)數(shù)的取值集合是( )
A.,B.,
C.,D.,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱柱中,底面是正方形,平面平面,,.過(guò)頂點(diǎn),的平面與棱,分別交于,兩點(diǎn).
(Ⅰ)求證:;
(Ⅱ)求證:四邊形是平行四邊形;
(Ⅲ)若,試判斷二面角的大小能否為?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的方程有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)的參數(shù)方程為(為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(Ⅰ)求曲線(xiàn)的直角坐標(biāo)方程及曲線(xiàn)上的動(dòng)點(diǎn)到坐標(biāo)原點(diǎn)的距離的最大值;
(Ⅱ)若曲線(xiàn)與曲線(xiàn)相交于,兩點(diǎn),且與軸相交于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若在處取到極值,求,的值,并求的單調(diào)區(qū)間;
(2)若對(duì)任意,都存在(為自然對(duì)數(shù)的底數(shù)),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com