如圖,正方形所在平面與三角形所在平面相交于平面,且,.    
(1)求證:平面
(2)求凸多面體的體積.
證明:(1)∵平面,平面,

在正方形中,,
,
平面

平面
解:(2)在中,,

過點于點
平面,平面,


平面
,

又正方形的面積
            

故所求凸多面體的體積為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形,。

(Ⅰ)求證:;

(Ⅱ)設(shè)線段的中點為,在直線上是否存在一點,使得?若存在,請指出點的位置,并證明你的結(jié)論;若不存在,請說明理由;

(Ⅲ)求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形,。

(Ⅰ)求證:

(Ⅱ)設(shè)線段、的中點分別為,求證:

(Ⅲ)求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 (2009四川卷文)(本小題滿分12分)

如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形,

(I)求證:;

(II)設(shè)線段的中點分別為、,求證:

(III)求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年遼寧省丹東市四校協(xié)作體高三第二次聯(lián)合考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本小題滿分12分)

如圖,正方形所在平面與圓所在平面相交于,線段為圓的弦,垂直于圓所在平面,垂足是圓上異于的點,,圓的直徑為9.

(I)求證:平面平面;

(II)求二面角的平面角的正切值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年山西省高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題

如圖,正方形所在平面與圓所在平面相交于,線段為圓的弦,垂直于圓所在平面,垂足是圓上異于的點,,圓的直徑為,

1)求證:平面平面2)求二面角的平面角的正切值.(12分)

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案