【題目】有5個男生和3個女生,從中選出5人擔任5門不同學科的科代表,求分別符合下列條件的選法數.
(1)某女生一定擔任語文科代表;
(2)某男生必須包括在內,但不擔任語文科代表;
(3)某女生一定要擔任語文科代表,某男生必須擔任科代表,但不擔任數學科代表.
科目:高中數學 來源: 題型:
【題目】某同學回答“用數學歸納法的證明(n∈N*)”的過程如下:
證明:①當n=1時,顯然命題是正確的.②假設當n=k(k≥1,k∈N*)時,有,那么當n=k+1時,,所以當n=k+1時命題是正確的,由①②可知對于n∈N*,命題都是正確的,以上證法是錯誤的,錯誤在于( 。
A.從k到k+1的推理過程沒有使用歸納假設
B.假設的寫法不正確
C.從k到k+1的推理不嚴密
D.當n=1時,驗證過程不具體
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將m位性別相同的客人,按如下方法安排入住這n個房間:首先,安排1位客人和余下的客人的入住房間;然后,從余下的客人中安排2位客人和再次余下的客人的入住房間;依此類推,第幾號房就安排幾位客人和余下的客人的入住.這樣,最后一間房間正好安排最后余下的n位客人.試求客人的數和客房的房間數,以及每間客房入住客人的數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別是,點在橢圓上, 是等邊三角形.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)點在橢圓上,線段與線段交于點,若與的面積之比為,求點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為橢圓的左右焦點,點在橢圓上,且.
(1)求橢圓的方程;
(2)過的直線分別交橢圓于和,且,問是否存在常數,使得等差數列?若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有一段“三段論”,其推理是這樣的:對于可導函數,若,則是函數的極值點,因為函數滿足,所以是函數的極值點”,結論以上推理
A. 大前提錯誤B. 小前提錯誤C. 推理形式錯誤D. 沒有錯誤
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=x2+bx+c,若對任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤6,則b的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com