【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2ccosA+a=2b
(1)求角C的值;
(2)若c=2,且△ABC的面積為 ,求a,b.

【答案】
(1)解:∵2ccosA+a=2b,

∴2sinCcosA+sinA=2sinB,

∴2sinCcosA+sinA=2sin(A+C),

即2sinCcosA+sinA=2sinAcosC+2cosAsinC,

∴sinA=2sinAcosC,

又∵C是三角形的內(nèi)角,


(2)解:∵ ,∴ ,∴ab=4,

又∵c2=a2+b2﹣2abcosC,

∴4=(a+b)2﹣2ab﹣ab,

∴a+b=4,

∴a=b=2.


【解析】(1)利用兩角和的正弦函數(shù)公式,正弦定理,三角形內(nèi)角和定理化簡(jiǎn)已知等式可得sinA=2sinAcosC,由于sinA≠0,解得 ,又C是三角形的內(nèi)角,即可得解C的值.(2)利用三角形面積公式可求ab=4,又由余弦定理可解得a+b=4,聯(lián)立即可解得a,b的值.
【考點(diǎn)精析】掌握正弦定理的定義和余弦定理的定義是解答本題的根本,需要知道正弦定理:;余弦定理:;;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一解三角形的題目因紙張破損,有一條件不清,具體如下:在△ABC中,已知a= ,2cos2 =( ﹣1)cosB,c= , 求角A,若該題的答案是A=60°,請(qǐng)將條件補(bǔ)充完整.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子中裝有5張編號(hào)依次為1,2,3,4,5的卡片,這5張卡片除號(hào)碼外完全相同,現(xiàn)進(jìn)行有放回的連續(xù)抽取兩次,每次任意地取出一張卡片.
(1)求出所有可能結(jié)果數(shù),并列出所有可能結(jié)果;
(2)求條件“取出卡片的號(hào)碼之和不小于7或小于5”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從吉安市某校高一的1000名學(xué)生隨機(jī)抽取50名分析期中考試數(shù)學(xué)成績(jī),被抽取學(xué)生成績(jī)?nèi)拷橛?5分和135分之間,將抽取的成績(jī)分成八組:第一組[95,100],第二組[100,105],…,第八組[130,135],如圖是按上述分組得到的頻率分布直方圖的一部分,已知前三組的人數(shù)成等差數(shù)列,第六組的人數(shù)為4人,第一組的人數(shù)是第七組、第八組人數(shù)之和.

(1)在圖上補(bǔ)全頻率分布直方圖,并估計(jì)該校1000名學(xué)生中成績(jī)?cè)?20分以上(含120分)的人數(shù);
(2)若從成績(jī)屬于第六組,第八組的所有學(xué)生中隨機(jī)抽取兩名學(xué)生,記他們的成績(jī)分別為x,y,事件G=||x﹣y|≤5|,求P(G).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1、F2分別是雙曲線 的左右焦點(diǎn),A為雙曲線的右頂點(diǎn),線段AF2的垂直平分線交雙曲線與P,且|PF1|=3|PF2|,則該雙曲線的離心率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】富華中學(xué)的一個(gè)文學(xué)興趣小組中,三位同學(xué)張博源、高家銘和劉雨恒分別從莎士比亞、雨果和曹雪芹三位名家中選擇了一位進(jìn)行性格研究,并且他們選擇的名家各不相同.三位同學(xué)一起來(lái)找圖書管理員劉老師,讓劉老師猜猜他們?nèi)烁髯缘难芯繉?duì)象.劉老師猜了三句話:“①?gòu)埐┰囱芯康氖巧勘葋;②劉雨恒研究的肯定不是曹雪芹;③高家銘自然不?huì)研究莎士比亞.”很可惜,劉老師的這種猜法,只猜對(duì)了一句.據(jù)此可以推知張博源、高家銘和劉雨恒分別研究的是__________.(A莎士比亞、B雨果、C曹雪芹,按順序填寫字母即可.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)是二次函數(shù),如圖是f′(x)的大致圖象,若f(x)的極大值與極小值的和等于 ,則f(0)的值為( )

A.0
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】423日是世界讀書日,為提高學(xué)生對(duì)讀書的重視,讓更多的人暢游于書海中,從而收獲更多的知識(shí),某高中的校學(xué)生會(huì)開展了主題為讓閱讀成為習(xí)慣,讓思考伴隨人生的實(shí)踐活動(dòng),校學(xué)生會(huì)實(shí)踐部的同學(xué)隨即抽查了學(xué)校的40名高一學(xué)生,通過(guò)調(diào)查它們是喜愛讀紙質(zhì)書還是喜愛讀電子書,來(lái)了解在校高一學(xué)生的讀書習(xí)慣,得到如表列聯(lián)表:

喜歡讀紙質(zhì)書

不喜歡讀紙質(zhì)書

合計(jì)

16

4

20

8

12

20

合計(jì)

24

16

40

(Ⅰ)根據(jù)如表,能否有99%的把握認(rèn)為是否喜歡讀紙質(zhì)書籍與性別有關(guān)系?

(Ⅱ)從被抽查的16名不喜歡讀紙質(zhì)書籍的學(xué)生中隨機(jī)抽取2名學(xué)生,求抽到男生人數(shù)ξ的分布列及其數(shù)學(xué)期望E(ξ).

參考公式:K2=,其中n=a+b+c+d.

下列的臨界值表供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)驗(yàn)杯足球賽采用七人制淘汰賽規(guī)則,某場(chǎng)比賽中一班與二班在常規(guī)時(shí)間內(nèi)戰(zhàn)平,直接進(jìn)入點(diǎn)球決勝環(huán)節(jié),在點(diǎn)球決勝環(huán)節(jié)中,雙方首先輪流罰點(diǎn)球三輪,罰中更多點(diǎn)球的球隊(duì)獲勝;若雙方在三輪罰球中未分勝負(fù),則需要進(jìn)行一對(duì)一的點(diǎn)球決勝,即雙方各派處一名隊(duì)員罰點(diǎn)球,直至分出勝負(fù);在前三輪罰球中,若某一時(shí)刻勝負(fù)已分,尚未出場(chǎng)的隊(duì)員無(wú)需出場(chǎng)罰球(例如一班在先罰球的情況下,一班前兩輪均命中,二班前兩輪未能命中,則一班、二班的第三位同學(xué)無(wú)需出場(chǎng)).由于一班同學(xué)平時(shí)踢球熱情較高,每位隊(duì)員罰點(diǎn)球的命中率都能達(dá)到0.8,而二班隊(duì)員的點(diǎn)球命中串只有0.5,比賽時(shí)通過(guò)抽簽決定一班在每一輪都先罰球.

(1)定義事件為“一班第三位同學(xué)沒能出場(chǎng)罰球”,求事件發(fā)生的概率;

(2)若兩隊(duì)在前三輪點(diǎn)球結(jié)束后打平,則進(jìn)入一對(duì)一點(diǎn)球決勝,一對(duì)一球決勝由沒有在之前點(diǎn)球大戰(zhàn)中出場(chǎng)過(guò)的隊(duì)員主罰點(diǎn)球,若在一對(duì)一點(diǎn)球決勝的某一輪中,某對(duì)隊(duì)員射入點(diǎn)球且另一隊(duì)員未能射入,則比賽結(jié)束;若兩名隊(duì)員均射入或者均射失點(diǎn)球,則進(jìn)行下一輪比賽. 若直至雙方場(chǎng)上每名隊(duì)員都已經(jīng)出場(chǎng)罰球,則比賽亦結(jié)束,雙方通過(guò)抽簽決定勝負(fù),本場(chǎng)比賽中若已知雙方在點(diǎn)球大戰(zhàn),以隨機(jī)變量記錄雙方進(jìn)行一對(duì)一點(diǎn)球決勝的輪數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案