【題目】已知函數(shù)f(x)=
(1)判斷f(x)的奇偶性;
(2)判斷f(x)的單調(diào)性,并用定義證明;
(3)解不等式f(f(x))+f( )<0.

【答案】
(1)解:由2x+1>1得函數(shù)的定義域?yàn)镽,

又f(﹣x)+f(x)= + = + ﹣1=1﹣1=0.

則f(﹣x)=﹣f(x),

故f(x)為奇函數(shù)


(2)解:f(x)為R上的減函數(shù)

證明如下:

任取x1<x2,則f(x1)﹣f(x2)= + = = ,

∵x1<x2,∴ ,

則f(x1)﹣f(x2)= >0,

∴f(x1)>f(x2),

故f(x)為R上的減函數(shù)


(3)解:由(1)(2)知f(x)在R上是奇函數(shù)且單調(diào)遞減,

由f(f(x))+f( )<0得f(f(x))<﹣f( )=f(﹣ ),

則f(x)>﹣

>﹣ ,

即2x<7,得x<log27,

故不等式的解集為(﹣∞,log27)


【解析】(1)根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷即可,(2)根據(jù)函數(shù)單調(diào)性的定義,利用定義法進(jìn)行證明,(3)根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系將不等式進(jìn)行轉(zhuǎn)化求解即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較;偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)是奇函數(shù),函數(shù)是偶函數(shù),則

A. 函數(shù)是奇函數(shù) B. 函數(shù)是奇函數(shù)

C. 函數(shù)是奇函數(shù) D. 是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】集合I={1,2,3,4,5},集合A,B為集合I的兩個(gè)非空子集,若集合A中元素的最大值小于集合B中元素的最小值,則滿足條件的A,B的不同情形有( )種.
A.46
B.47
C.48
D.49

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校的特長(zhǎng)班有50名學(xué)生,其中有體育生20名,藝術(shù)生30名,在學(xué)校組織的一次體檢中,該班所有學(xué)生進(jìn)行了心率測(cè)試,心率全部介于50次/分到75次/分之間,現(xiàn)將數(shù)據(jù)分成五組,第一組,第二組,…,第五組,按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前三組的頻率之比為.

(Ⅰ)求的值,并求這50名同學(xué)心率的平均值;

(Ⅱ)因?yàn)閷W(xué)習(xí)專業(yè)的原因,體育生常年進(jìn)行系統(tǒng)的身體鍛煉,藝術(shù)生則很少進(jìn)行系統(tǒng)的身體鍛煉,若從第一組和第二組的學(xué)生中隨機(jī)抽取一名,該學(xué)生是體育生的概率為0.8,請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有99.5%的把握認(rèn)為心率小于60次/分與常年進(jìn)行系統(tǒng)的身體鍛煉有關(guān)?說(shuō)明你的理由.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: ,其中

心率小于60次/分

心率不小于60次/分

合計(jì)

體育生

20

藝術(shù)生

30

合計(jì)

50

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=1﹣ ,g(x)=ln(ax2﹣3x+1),若對(duì)任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,則實(shí)數(shù)a的最大值為(
A.2
B.
C.4
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生.某市場(chǎng)研究人員為了了解共享單車運(yùn)營(yíng)公司M的經(jīng)營(yíng)狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的折線圖.

(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合月度市場(chǎng)占有率y與月份代碼x之間的關(guān)系.求y關(guān)于x的線性回歸方程,并預(yù)測(cè)M公司2017年4月份(即x=7時(shí))的市場(chǎng)占有率;

(Ⅱ)為進(jìn)一步擴(kuò)大市場(chǎng),公司擬再采購(gòu)一批單車.現(xiàn)有采購(gòu)成本分別為1000元/輛和1200元/輛的A、B兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會(huì)導(dǎo)致車輛報(bào)廢年限各不相同.考慮到公司運(yùn)營(yíng)的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款車型的單車各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車使用壽命頻數(shù)表如下:


報(bào)廢年限

車型

1年

2年

3年

4年

總計(jì)

A

20

35

35

10

100

B

10

30

40

20

100

經(jīng)測(cè)算,平均每輛單車每年可以帶來(lái)收入500元.不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且以頻率作為每輛單車使用壽命的概率.如果你是M公司的負(fù)責(zé)人,以每輛單車產(chǎn)生利潤(rùn)的期望值為決策依據(jù),你會(huì)選擇采購(gòu)哪款車型?

參考數(shù)據(jù):

(參考公式:回歸直線方程為,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生.某市場(chǎng)研究人員為了了解共享單車運(yùn)營(yíng)公司M的經(jīng)營(yíng)狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的折線圖.

(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合月度市場(chǎng)占有率y與月份代碼x之間的關(guān)系.求y關(guān)于x的線性回歸方程,并預(yù)測(cè)M公司2017年4月份的市場(chǎng)占有率;

(Ⅱ)為進(jìn)一步擴(kuò)大市場(chǎng),公司擬再采購(gòu)一批單車.現(xiàn)有采購(gòu)成本分別為1000元/輛和1200元/輛的A、B兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會(huì)導(dǎo)致車輛報(bào)廢年限各不相同.考慮到公司運(yùn)營(yíng)的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款車型的單車各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車使用壽命頻數(shù)表如下:


報(bào)廢年限

車型

1年

2年

3年

4年

總計(jì)

A

20

35

35

10

100

B

10

30

40

20

100

經(jīng)測(cè)算,平均每輛單車每年可以帶來(lái)收入500元.不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且以頻率作為每輛單車使用壽命的概率.如果你是M公司的負(fù)責(zé)人,以每輛單車產(chǎn)生利潤(rùn)的期望值為決策依據(jù),你會(huì)選擇采購(gòu)哪款車型?

參考數(shù)據(jù): .

參考公式:

回歸直線方程為其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax﹣a(其中a∈R,e是自然對(duì)數(shù)的底數(shù),e=2.71828…).
(Ⅰ)當(dāng)a=e時(shí),求函數(shù)f(x)的極值;
(Ⅱ)若f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】集合A={x| ≤0,x∈R},B={x||x﹣1|<2,x∈R}.
(1)求A,B;
(2)求B∩(UA).

查看答案和解析>>

同步練習(xí)冊(cè)答案