【題目】已知是數(shù)列的前項(xiàng)和,,數(shù)列中,,且.

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),求的前項(xiàng)和;

3)證明:對(duì)一切,

【答案】(1);(2);(3)見解析

【解析】

1)當(dāng)時(shí),構(gòu)造,變形為,再求數(shù)列的通項(xiàng)公式;

(2)由已知變形為,利用累加法求數(shù)列的通項(xiàng)公式,然后再求數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求和;

3表示求數(shù)列的前項(xiàng)和,然后將通項(xiàng)放縮為時(shí),,然后利用裂項(xiàng)相消法求和.

(1)時(shí),可得,

時(shí),,兩式相減,

,,

,

數(shù)列的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別成以4為公差的等差數(shù)列,

當(dāng),時(shí),,

當(dāng),時(shí), ,

,.

(2) ,

,即 ,

整理為:,

,

,

…………………………,

時(shí),

個(gè)式子相加可得 ,

,當(dāng)時(shí),成立,

,

,

,

兩式相減可得:

,

(3)表示求數(shù)列的前項(xiàng)和,設(shè)前項(xiàng)和為

當(dāng)時(shí),成立,

當(dāng)時(shí),

.

綜上可知,

對(duì)一切.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)證明:的導(dǎo)函數(shù)在區(qū)間上存在唯一零點(diǎn);

2)若對(duì)任意,均存在,使得,求實(shí)數(shù)的取值范圍.

注:復(fù)合函數(shù)的導(dǎo)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為.

(1)若a=1,求Cl的交點(diǎn)坐標(biāo);

(2)若C上的點(diǎn)到l的距離的最大值為,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年森林城市建設(shè)座談會(huì)在深圳舉行.會(huì)上宣讀了國家森林城市稱號(hào)批準(zhǔn)決定,并舉行授牌儀式,滕州市榜上有名,被正式批準(zhǔn)為國家森林城市”.為進(jìn)一步推進(jìn)國家森林城市建設(shè),我市準(zhǔn)備制定生態(tài)環(huán)境改造投資方案,該方案要求同時(shí)具備下列兩個(gè)條件:

①每年用于風(fēng)景區(qū)改造的費(fèi)用隨每年改造生態(tài)環(huán)境總費(fèi)用增加而增加;②每年用于風(fēng)景區(qū)改造的費(fèi)用不得低于每年改造生態(tài)環(huán)境總費(fèi)用15%,但不得高于每年改造生態(tài)環(huán)境總費(fèi)用25%.若每年改造生態(tài)環(huán)境的總費(fèi)用至少1億元,至多4億元;請(qǐng)你分析能否采用函數(shù)模型作為生態(tài)環(huán)境改造投資方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形和菱形所在的平面相互垂直,,的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過點(diǎn),且與直線相切, 圓心C在直線.

1)求圓C的方程;

2)過原點(diǎn)的直線截圓C所得的弦長(zhǎng)為2,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,是邊長(zhǎng)為2的正三角形,平面ABC,平面平面ABC,,且.

1)若,求證:平面BDE;

2)若二面角,求直線CD與平面BDE所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且點(diǎn)在橢圓.

(1)求橢圓的方程;

(2)若橢圓的焦點(diǎn)在軸上,點(diǎn)為坐標(biāo)原點(diǎn),射線、分別與橢圓交于點(diǎn)、點(diǎn),且,試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案