【題目】拋物線的焦點(diǎn)為F,圓,點(diǎn)為拋物線上一動(dòng)點(diǎn).已知當(dāng)的面積為.
(I)求拋物線方程;
(II)若,過(guò)P做圓C的兩條切線分別交y軸于M,N兩點(diǎn),求面積的最小值,并求出此時(shí)P點(diǎn)坐標(biāo).
【答案】(Ⅰ) (II)的最小值為2,
【解析】
(Ⅰ)根據(jù)題意可得x02+(y0)2,|1||x0|,x02=2py0,即可解得p=1;
(II)設(shè)P(x0,y0),M(0,b),N(0,c),且b>c,則直線PM的方程可得,由題設(shè)知,圓心(0,1)到直線PM的距離為1,把x0,y0代入化簡(jiǎn)整理可得(2y0﹣1)b2﹣2y0b﹣y02=0,同理可得(2y0﹣1)c2﹣2y0c﹣y02=0,進(jìn)而可知b,c為(2y0﹣1)x2﹣2y0x﹣y02=0的兩根,根據(jù)求根公式,可求得b﹣c,進(jìn)而可得△PMN的面積的表達(dá)式,根據(jù)均值不等式可得
(Ⅰ)由題意知:
,
,
,
,
拋物線方程為.
(Ⅱ)設(shè)過(guò)點(diǎn)P且與圓C相切的直線的方程為
令x=0,得
切線與x軸的交點(diǎn)為
而,
整理得
,
設(shè)兩切線斜率為,
則
,
,
,
,
則,
令,則
,
而
當(dāng)且僅當(dāng),即t=1時(shí),“=”成立.
此時(shí),
的最小值為2,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)療器械公司在全國(guó)共有個(gè)銷售點(diǎn),總公司每年會(huì)根據(jù)每個(gè)銷售點(diǎn)的年銷量進(jìn)行評(píng)價(jià)分析.規(guī)定每個(gè)銷售點(diǎn)的年銷售任務(wù)為一萬(wàn)四千臺(tái)器械.根據(jù)這個(gè)銷售點(diǎn)的年銷量繪制出如下的頻率分布直方圖.
(1)完成年銷售任務(wù)的銷售點(diǎn)有多少個(gè)?
(2)若用分層抽樣的方法從這個(gè)銷售點(diǎn)中抽取容量為的樣本,求該五組,,,,,(單位:千臺(tái))中每組分別應(yīng)抽取的銷售點(diǎn)數(shù)量.
(3)在(2)的條件下,從該樣本中完成年銷售任務(wù)的銷售點(diǎn)中隨機(jī)選取個(gè),求這兩個(gè)銷售點(diǎn)不在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),圓:與軸的正半軸的交點(diǎn)是,過(guò)點(diǎn)的直線與圓交于不同的兩點(diǎn).
(1)若直線與軸交于,且,求直線的方程;
(2)設(shè)直線,的斜率分別是,,求的值;
(3)設(shè)的中點(diǎn)為,點(diǎn),若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a1=1, ,其中n∈N*.
(1)設(shè),求證:數(shù)列{bn}是等差數(shù)列,并求出{an}的通項(xiàng)公式.
(2)設(shè),數(shù)列{cncn+2}的前n項(xiàng)和為Tn,是否存在正整數(shù)m,使得對(duì)于n∈N*,恒成立?若存在,求出m的最小值;若不存在,請(qǐng)說(shuō)明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司共有10條產(chǎn)品生產(chǎn)線,不超過(guò)5條生產(chǎn)線正常工作時(shí),每條生產(chǎn)線每天純利潤(rùn)為1100元,超過(guò)5條生產(chǎn)線正確工作時(shí),超過(guò)的生產(chǎn)線每條純利潤(rùn)為800元,原生產(chǎn)線利潤(rùn)保持不變.未開(kāi)工的生產(chǎn)線每條每天的保養(yǎng)等各種費(fèi)用共100元.用x表示每天正常工作的生產(chǎn)線條數(shù),用y表示公司每天的純利潤(rùn).
(I)寫出y關(guān)于x的函數(shù)關(guān)系式,并求出純利潤(rùn)為7700元時(shí)工作的生產(chǎn)線條數(shù).
(II)為保證新開(kāi)的生產(chǎn)線正常工作,需對(duì)新開(kāi)的生產(chǎn)線進(jìn)行檢測(cè),現(xiàn)從該生產(chǎn)線上隨機(jī)抽取100件產(chǎn)品,測(cè)量產(chǎn)品數(shù)據(jù),用統(tǒng)計(jì)方法得到樣本的平均數(shù),標(biāo)準(zhǔn)差,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估計(jì)值.為檢測(cè)該生產(chǎn)線生產(chǎn)狀況,現(xiàn)從加工的產(chǎn)品中任意抽取一件,記其數(shù)據(jù)為X,依據(jù)以下不等式評(píng)判(P表示對(duì)應(yīng)事件的概率)
①
②
③
評(píng)判規(guī)則為:若至少滿足以上兩個(gè)不等式,則生產(chǎn)狀況為優(yōu),無(wú)需檢修;否則需檢修生產(chǎn)線.試判斷該生產(chǎn)線是否需要檢修.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)安排甲、乙、丙、丁、戊5名同學(xué)參加2022年杭州亞運(yùn)會(huì)志愿者服務(wù)活動(dòng),有翻譯、導(dǎo)游、禮儀、司機(jī)四項(xiàng)工作可以安排,以下說(shuō)法正確的是( )
A.每人都安排一項(xiàng)工作的不同方法數(shù)為54
B.每人都安排一項(xiàng)工作,每項(xiàng)工作至少有一人參加,則不同的方法數(shù)為
C.如果司機(jī)工作不安排,其余三項(xiàng)工作至少安排一人,則這5名同學(xué)全部被安排的不同方法數(shù)為
D.每人都安排一項(xiàng)工作,每項(xiàng)工作至少有一人參加,甲、乙不會(huì)開(kāi)車但能從事其他三項(xiàng)工作,丙、丁、戊都能勝任四項(xiàng)工作,則不同安排方案的種數(shù)是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊半圓形的空地,直徑米,政府計(jì)劃在空地上建一個(gè)形狀為等腰梯形的花圃,如圖所示,其中為圓心,,在半圓上,其余為綠化部分,設(shè).
(1)記花圃的面積為,求的最大值;
(2)若花圃的造價(jià)為10元/米,在花圃的邊、處鋪設(shè)具有美化效果的灌溉管道,鋪設(shè)費(fèi)用為500元/米,兩腰、不鋪設(shè),求滿足什么條件時(shí),會(huì)使總造價(jià)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),共享單車已經(jīng)悄然進(jìn)入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務(wù)民眾,某共享單車公司在其官方中設(shè)置了用戶評(píng)價(jià)反饋系統(tǒng),以了解用戶對(duì)車輛狀況和優(yōu)惠活動(dòng)的評(píng)價(jià).現(xiàn)從評(píng)價(jià)系統(tǒng)中選出條較為詳細(xì)的評(píng)價(jià)信息進(jìn)行統(tǒng)計(jì),車輛狀況的優(yōu)惠活動(dòng)評(píng)價(jià)的列聯(lián)表如下:
對(duì)優(yōu)惠活動(dòng)好評(píng) | 對(duì)優(yōu)惠活動(dòng)不滿意 | 合計(jì) | |
對(duì)車輛狀況好評(píng) | |||
對(duì)車輛狀況不滿意 | |||
合計(jì) |
(1)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為優(yōu)惠活動(dòng)好評(píng)與車輛狀況好評(píng)之間有關(guān)系?
(2)為了回饋用戶,公司通過(guò)向用戶隨機(jī)派送騎行券.用戶可以將騎行券用于騎行付費(fèi),也可以通過(guò)轉(zhuǎn)贈(zèng)給好友.某用戶共獲得了張騎行券,其中只有張是一元券.現(xiàn)該用戶從這張騎行券中隨機(jī)選取張轉(zhuǎn)贈(zèng)給好友,求選取的張中至少有張是一元券的概率.
參考數(shù)據(jù):
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四色猜想是世界三大數(shù)學(xué)猜想之一,1976年數(shù)學(xué)家阿佩爾與哈肯證明,稱為四色定理.其內(nèi)容是:“任意一張平面地圖只用四種顏色就能使具有共同邊界的國(guó)家涂上不同的顏色.”用數(shù)學(xué)語(yǔ)言表示為“將平面任意地細(xì)分為不相重疊的區(qū)域,每一個(gè)區(qū)域總可以用,,,四個(gè)數(shù)字之一標(biāo)記,而不會(huì)使相鄰的兩個(gè)區(qū)域得到相同的數(shù)字.”如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗實(shí)線圍城的各區(qū)域上分別標(biāo)有數(shù)字,,,的四色地圖符合四色定理,區(qū)域和區(qū)域標(biāo)記的數(shù)字丟失.若在該四色地圖上隨機(jī)取一點(diǎn),則恰好取在標(biāo)記為的區(qū)域的概率所有可能值中,最大的是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com