【題目】如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F分別是BC,PC的中點.
(I)證明:AE⊥PD;
(II)設AB=PA=2,
①求異面直線PB與AD所成角的正弦值;
②求二面角E-AF-C的余弦值.
【答案】(Ⅰ)證明見解析;(Ⅱ)①②
【解析】
(Ⅰ)通過得到,再證明,平面PAD,然后證明;(Ⅱ)以A為坐標原點,建立如圖所示的空間直角坐標系,①求出,,得到異面直線PB與AD所成角的正弦函數(shù)值;②求出平面AEF的一法向量,平面AFC的一法向量,利用空間向量的數(shù)量積求解所求二面角的余弦值.
(Ⅰ)證明:由四邊形為菱形,,
可得為正三角形.
因為為的中點,所以.
又,因此.
因為平面,平面,
所以.
而平面,平面且,
所以平面,又平面.
所以
(Ⅱ)由(Ⅰ)知兩兩垂直,以為坐標原點,建立空間直角坐標系,又分別為的中點,所以,,,,,,,
①,.
∴,
設異面直線與所成角為,∴
②
設平面的一法向量為
則,因此
取
因為,,,
所以 ,
故為平面的一法向量.
又=,
所以 =.
因為二面角為銳角,所以所求二面角的余弦值為
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)某種型號的農(nóng)機具零配件,為了預測今年7月份該型號農(nóng)機具零配件的市場需求量,以合理安排生產(chǎn),工廠對本年度1月份至6月份該型號農(nóng)機具零配件的銷售量及銷售單價進行了調(diào)查,銷售單價(單位:元)和銷售量(單位:千件)之間的6組數(shù)據(jù)如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
銷售單價(元) | 11.1 | 9.1 | 9.4 | 10.2 | 8.8 | 11.4 |
銷售量(千件) | 2.5 | 3.1 | 3 | 2.8 | 3.2 | 2.4 |
(1)根據(jù)1至6月份的數(shù)據(jù),求關于的線性回歸方程(系數(shù)精確到0.01);
(2)結合(1)中的線性回歸方程,假設該型號農(nóng)機具零配件的生產(chǎn)成本為每件3元,那么工廠如何制定7月份的銷售單價,才能使該月利潤達到最大?(計算結果精確到0.1)
參考公式:回歸直線方程,
參考數(shù)據(jù):,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于函數(shù),下列判斷正確的是( )
A.是的極大值點
B.函數(shù)有且只有1個零點
C.存在正實數(shù),使得成立
D.對任意兩個正實數(shù),,且,若,則.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學準備組建“文科”興趣特長社團,由課外活動小組對高一學生文科、理科進行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學生的問卷成績(單位:分)進行統(tǒng)計,將數(shù)據(jù)按照,,,,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學生,低于60分的稱為“理科方向”學生.
|
(1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此判斷是否有99%的把握認為是否為“文科方向”與性別有關?
(2)將頻率視為概率,現(xiàn)在從該校高一學生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數(shù)為,若每次抽取的結果是相互獨立的,求的分布列、期望和方差.
參考公式:,其中.
參考臨界值:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,是邊長,的矩形硬紙片,在硬紙片的四角切去邊長相等的小正方形后,再沿虛線折起,做成一個無蓋的長方體盒子,、是上被切去的小正方形的兩個頂點,設.
(1)將長方體盒子體積表示成的函數(shù)關系式,并求其定義域;
(2)當為何值時,此長方體盒子體積最大?并求出最大體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為支援武漢的防疫,某醫(yī)院職工踴躍報名,其中報名的醫(yī)生18人,護士12人,醫(yī)技6人,根據(jù)需要,從中抽取一個容量為n的樣本參加救援隊,若采用系統(tǒng)抽樣和分層抽樣,均不用剔除人員.當抽取n+1人時,若采用系統(tǒng)抽樣,則需剔除1個報名人員,則抽取的救援人員為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(Ⅰ)若的圖像在處的切線經(jīng)過點(3,4),求的值;
(Ⅱ)若,求證: ;
(Ⅲ)當函數(shù)存在三個不同的零點時,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com