某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了月份每月號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日  期
1月10日
2月10日
3月10日
4月10日
5月10日
6月10日
晝夜溫差(°C)
10
11
13
12
8
6
就診人數(shù)(個(gè))
22
25
29
26
16
12
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).
(Ⅰ)求選取的組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;
(Ⅱ)若選取的是月與月的兩組數(shù)據(jù),請根據(jù)月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;(其中
(Ⅲ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過人,則認(rèn)為得到的線性回歸方程是理想的.試問該小組所得線性回歸方程是否理想?

(Ⅰ)(Ⅱ)(Ⅲ)理想

解析試題分析:(Ⅰ)設(shè)抽到相鄰兩個(gè)月的數(shù)據(jù)為事件
因?yàn)閺?組數(shù)據(jù)中選取2組數(shù)據(jù)共有15種情況,每種情況都是等可能出現(xiàn)的,
其中抽到相鄰兩個(gè)月的數(shù)據(jù)的情況有5種,
∴ .                                                          ……4分
(Ⅱ)由數(shù)據(jù)求得,由公式,得
所以關(guān)于的線性回歸方程為.                                   ……9分
(Ⅲ)當(dāng)時(shí),,有;
同樣,當(dāng)時(shí),,有;
所以,該小組所得線性回歸方程是理想的.                                         ……13分
考點(diǎn):本小題注意考查古典概型,回歸直線的求解及應(yīng)用.
點(diǎn)評:應(yīng)用古典概型概率公式時(shí)要保證每種情況都是等可能出現(xiàn)的,否則就不能用古典概型公式求解.回歸直線方程的求解運(yùn)算量較大,要根據(jù)公式,仔細(xì)計(jì)算,更要會應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(文科)某高校從參加今年自主招生考試的學(xué)生中隨機(jī)抽取容量為50的學(xué)生成績樣本,得頻率分布表如下:

組號
 
分組
 
頻數(shù)
 
頻率
 
第一組
 
 [230,235)
 
8
 
0.16
 
第二組
 
 [235,240)
 

 
0.24
 
第三組
 
 [240,245)
 
15
 

 
第四組
 
 [245,250)
 
10
 
0.20
 
第五組
 
 [250,255]
 
5
 
0.10
 
合             計(jì)
 
50
 
1.00
 
(1)寫出表中①②位置的數(shù)據(jù);
(2)為了選拔出更優(yōu)秀的學(xué)生,高校決定在第三、四、五組中用分層抽樣法抽取6名學(xué)生進(jìn)行第二輪考核,分別求第三、四、五各組參加考核人數(shù);
(3)在(2)的前提下,高校決定在這6名學(xué)生中錄取2名學(xué)生,求2人中至少有1名是第四組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)我校高二(1)班男同學(xué)有45名,女同學(xué)有15名,按照分層抽樣的方法組建了一個(gè)4人的課外興趣小組.
(1)求某同學(xué)被抽到的概率及課外興趣小組中男、女同學(xué)的人數(shù);
(2)經(jīng)過一個(gè)月的學(xué)習(xí)、討論,這個(gè)興趣小組決定選出兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),方法是先從小組里選出1名同學(xué)做實(shí)驗(yàn),該同學(xué)做完后,再從小組內(nèi)剩下的同學(xué)中選一名同學(xué)做實(shí)驗(yàn),求選出的兩名同學(xué)中恰有一名女同學(xué)的概率;
(3)試驗(yàn)結(jié)束后,第一次做試驗(yàn)的同學(xué)得到的試驗(yàn)數(shù)據(jù)為68,70,71,72,74,第二次做試驗(yàn)的同學(xué)得到的試驗(yàn)數(shù)據(jù)為69,70,70,72,74,請問哪位同學(xué)的實(shí)驗(yàn)更穩(wěn)定?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
PM2. 5是指大氣中直徑小于或等于2. 5微米的顆粒物,也稱為 可人肺顆粒物.我國PM2. 5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限 值,即PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級; 在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在 75微克/立方米以上空氣質(zhì)量為超標(biāo).
某市環(huán)保局從市區(qū)2012年全年每天的PM2.5監(jiān)測數(shù)據(jù)中 隨機(jī)抽取15天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示(十位為 莖,個(gè)位為葉)

(I)從這9天的數(shù)據(jù)中任取2天的數(shù)據(jù),求恰有一天空氣質(zhì)量達(dá)到一級的概率;
(II) 以這9天的PM2.   5日均值來估計(jì)供暖期間的空氣質(zhì)量情況,則供暖期間(按150天計(jì)算)中大約有多少天的空氣質(zhì)量達(dá)到一級.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
為了了解小學(xué)五年級學(xué)生的體能情況,抽取了實(shí)驗(yàn)小學(xué)五年級部分學(xué)生進(jìn)行踢毽子測試,將所得的數(shù)據(jù)整理后畫出頻率分布直方圖(如圖),已知圖中從左到右的前三個(gè)小組的頻率分別是0.1,0.3,0.4,第一小組的頻數(shù)是5.

(Ⅰ)求第四小組的頻率和參加這次測試的學(xué)生人數(shù);
(Ⅱ)在這次測試中,問學(xué)生踢毽子次數(shù)的中位數(shù)落在第幾小組內(nèi)?
(Ⅲ)在這次跳繩測試中,規(guī)定跳繩次數(shù)在110以上的為優(yōu)秀,試估計(jì)該校此年級跳繩成績的優(yōu)秀率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

通過市場調(diào)查,得到某產(chǎn)品的資金投入x(萬元)與獲得的利潤y(萬元)的數(shù)據(jù),如表所示:

資金投入x
2
3
4
5
6
利潤y
2
3
5
6
9
(Ⅰ)畫出數(shù)據(jù)對應(yīng)的散點(diǎn)圖;
(Ⅱ)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程=x+;
(Ⅲ)現(xiàn)投入資金10萬元,估計(jì)獲得的利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
為迎接建黨90周年,某班開展了一次“黨史知識競賽”,競賽分初賽和決賽兩個(gè)階段進(jìn)行,在初賽后,把成績(滿分為100分,分?jǐn)?shù)均為整數(shù))進(jìn)行統(tǒng)計(jì),制成如圖頻率分布表:

(1)求的值;
(2)決賽規(guī)則如下:為每位參加決賽的選手準(zhǔn)備四道題目,選手對其依次作答,答對兩道就終止答題,并獲得一等獎,若題目答完仍然只答對一道,則獲得二等獎.某同學(xué)進(jìn)入決賽,每道題答對的概率P的值恰好與頻率分布表中不少于90分的頻率的值相同.設(shè)該同學(xué)決賽中答題個(gè)數(shù)為X,求X的分布列以及X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)某種產(chǎn)品的廣告費(fèi)支出x與消費(fèi)額y(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):

x
 
2
 
4
 
5
 
6
 
8
 
y
 
30
 
40
 
60
 
50
 
70
 
(1)求線性回歸方程;
(2)預(yù)測當(dāng)廣告費(fèi)支出為700萬元時(shí)的銷售額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)某種產(chǎn)品的廣告費(fèi)支出與銷售額(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):


2
4
5
6
8

30
40
60
50
70
(1)畫出散點(diǎn)圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程.(其中
)

查看答案和解析>>

同步練習(xí)冊答案